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2.5 The proof Toruńczyk’s Theorem . . . . . . . . . . . . . . . . . . . 26

1



Introduction

In the infinite–dimensional topology, Toruńczyk’s approximation theorem is one
of the strong results. It is the major step in proving the characterization of
the Hilbert Cube. It has been proved first in 1978 by H. Toruńczyk, but the
proof used another strong result. Thereafter, in 1979, R. D. Edwards published
a different, more “elementary” proof in [Ed]. However, the published proof is
quite brief and focused onto compact case. Next, in 1989, more detailed version
of Edward’s proof for compact case was published in J. van Mill’s book [vM]

In this thesis we focus on the details of Edwards’s proof of the Toruńczyk’s
approximation theorem, but now in full generality, i.e. for the locally compact
case.

Most of the statements stated in this thesis are taken from the book [vM]. We
follow the exposition there closely; so in the parentheses after the label of each
statement, there’s usually a number of corresponding statement in the book. The
number with an asterisk * refer to the statement in [vM] that is being generalized.
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Chapter 1

Statements taken from books;
prerequisites

We suppose all the spaces in this thesis are separable metric (with the only
exception of the space C(X, Y ) for noncompact X and Y ).

We sometimes write “iff” instead of “if and only if”. Furthermore, we denote
the interval [0, 1] by I and [−1, 1] by J throughout the text.

Let X and Y be spaces. We denote by C(X, Y ) the set of all continuous
functions from X to Y ; by H(X, Y ) ⊂ C(X, Y ) set of all homeomorphisms from
X to Y and we put H(X) = H(X,X). If V is an open covering of Y , we say
that two maps f, g : X → Y are V-close if for each x ∈ X there exists V ∈ V
such that f(x), g(x) ∈ V . If U is an open cover of X, we say that the map
f : X → Y is a U-map if for every y ∈ Y there is U ∈ U such that f−1(y) ⊂ U .
For maps f, g : X → Y we write f ∼ g if f and g are homotopic (i.e. there exists
a continuous map H : X × I → Y with H � X × {0} = f and H � X × {1} = g;
we call H a homotopy and use the notation Ht = H � X × {t}). We say that
the homotopy H : X × I → Y is limited by an open cover V of Y if for every
x ∈ X there is V ∈ V such that H({x} × I) ⊂ V . In this case we also call H
a V-homotopy. If two maps f, g : X → Y are homotopic by a homotopy which
is limited by an open cover V of Y , we write f ∼V g. If H : X × I → X is a
homotopy such that each level (i.e. the mapping Ht : X → X for t ∈ I) of it is a
homeomorphism, we call such H an isotopy.

1.1 Proper and closed maps

We shall use throughout the text, without any special reference, the following
simple fact about closed maps:

Proposition 1.1. Let f : X → Y be a closed continuous map between spaces
X and Y . Moreover, let A be subset of Y and let U be an open neighborhood of
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f−1(A) in X. Then there exists an open neighborhood V of A in Y such that
f−1(V ) ⊂ U .

Proof. Under the assumptions of the proposition, it follows that X −U is closed
in X, therefore f(X − U) is closed in Y , so Y − f(X − U) is open. Denote this
set by V . We prove that this set is as needed.

If a ∈ A, then f−1(a) ⊂ f−1(A) ⊂ U ; so f−1(a) ∩ (X − U) = ∅. It follows
that a ∈ Y − f(X − U) = V . So we just proved A ⊂ V .

Suppose that x ∈ f−1(V ) = f−1(Y − f(X − U)). Consequently, f(x) ∈
Y −f(X−U), so f(x) 6∈ f(X−U). Therefore x 6∈ X−U , so x ∈ U . Summarizing,
f−1(V ) ⊂ U . We are done.

A continuous map f : X → Y between locally compact spaces X and Y is

• proper provided that f−1(K) is compact for each compact K ⊂ Y ,

• perfect provided that it’s closed and f−1(y) is compact for each y ∈ Y .

We’ll make use of these concepts primarily in the “onto” case. Notice that the
finite composition of proper maps is again proper, this is trivial.

Proposition 1.2. A continuous surjection f : X → Y between locally compact
spaces X and Y is proper if and only if it is perfect.

Proof. For the implication “=⇒” it’s enough to show that f is closed. Take
closed F ⊂ X and a sequence of points yn ∈ f(F ) converging to a point y ∈ Y .
By assumption, the pre–image A of compact set {yn | n ∈ N} ∪ {y} is compact.
The set f−1(yn) ∩ F ⊂ A is nonempty for every n, so we can choose a point
from it, say xn. By compactness of A we have that there’s a subsequence xij ,
j ∈ N converging to, say x ∈ X. But closedness of F implies x ∈ F . Since f is
continuous, we have yij = f(xij ) → f(x), but we know that yij converges also to
y, so y = f(x) ∈ f(F ). So f(F ) is closed.

For the converse, take compact set C ⊂ Y , and take any sequence (xn)n∈N ⊂
f−1(C). Then (f(xn))n∈N ⊂ C has a cluster point, say y ∈ C. We show that
in any neighborhood U of the fiber f−1(y) there are infinitely many xn’s. By
closedness of f we have a neighborhood V of y in Y with f−1(V ) ⊂ U . But in
any such V there are infinitely many f(xn)’s, therefore these xn ∈ f−1f(xn) ⊂
f−1(V ) ⊂ U .

Now suppose that (xn)n∈N does not have a cluster point. Then for every
z ∈ f−1(y) exists a neighborhood Uz of z containing only finitely many xn’s. Such
Uz’s cover the compact set f−1(y), so there’s a finite subcover, say Uz1 , . . . , Uzk

.
But then Uz1 ∪ · · · ∪ Uzk

is the neighborhood of f−1(y) containing only finitely
many xn’s. Contradiction. So every sequence in f−1(C) has a cluster point, hence
f−1(C) is compact.
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Proposition 1.3. Let X and Y be locally compact spaces, f : X → Y be a proper
surjection. Then there exists an open cover U of Y such that for any space Z and
continuous maps g, h : Z → X which are f−1(U)-close we have g is proper iff h
is proper. In particular, for any locally compact space X there is an open cover
W of X such that for any space Z, two W-close maps are either both proper or
both not.

Proof. First remark that “in particular” part follows from the former statement
by letting f = 1X .

We write Y =
⋃

n∈NKn, where Kn is compact and Kn ⊂ intKn+1 for every
n ∈ N . This is possible, because Y , being locally compact separable metric space,
has the base of topology consisting of sets with compact closures. Put

U = {int(Kn+2) −Kn | n ∈ N} ∪ {int(K2)}.

We show that this is as required.
Denote also Cn = f−1(Kn) for every n ∈ N. Since f is proper, we see that

each Cn is compact. For any set A ⊂ Y , f−1(int(A)) is an open set contained in
f−1(A), so also in int(f−1(A)), therefore we have

f−1(int(Kn+2) −Kn) = f−1(int(Kn+2)) − f−1(Kn) ⊆ int(Cn+2) − Cn

and
Cn = f−1(Kn) ⊆ f−1(int(Kn+1)) ⊆ int(f−1(Kn+1)) = int(Cn+1).

Moreover, X =
⋃

n∈NCn. Summarizing, the open cover V = {int(Cn+2) − Cn |
n ∈ N} ∪ {int(C2)} of X is such that f−1(U) refines it. So it suffices to prove
that if a proper map g : Z → X and a continuous map h : Z → X are V-close,
then also h is proper.

So let C ⊂ X be compact. Then there is a finite subcover of V covering it, so
there is k ∈ N with C ⊂ int(Ck). If x ∈ h−1(C), then h(x) ∈ C ⊂ int(Ck). But
since g and h are V-close, we have that g(x) ∈ int(Ck+1). Therefore h−1(C) ⊂
g−1(Ck+1), and since g−1(Ck+1) is compact, h−1(C), being its closed subset, is
also compact. It follows that also h is proper, what finishes the proof.

1.2 Topologies on some spaces

Let X and Y be locally compact spaces. We topologize the space C(X, Y ) of
all continuous functions from X to Y by letting the basic neighborhood of any
f ∈ C(X, Y ) be all sets of the form N(f,U) for any open cover U of Y , where

N(f,U) = {g ∈ C(X,Y ) | f and g are U -close}.

This is clearly the same as to say that basic neighborhoods of f are of the form
N(f, ε), for any ε : Y → (0,∞), where (if d is an admissible metric on Y )

N(f, ε) = {g ∈ C(X, Y ) | d(f(x), g(x)) < ε(x) for all x ∈ X}.
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Another equivalent description of this topology is as follows: it’s induced by the
family

{d̂ | d is an admissible bounded metric on Y}

of metrics on C(X, Y ), where

d̂(f, g) = sup
x∈X

d(f(x), g(x))

for f, g ∈ C(X, Y ) (see [Be], page 121). The metric d̂ is complete iff d is complete
(see [vM], corollary 1.3.5). Notice that if X is compact space, the space C(X, Y )
is separable and metrizable with any of metrics d̂, since they are all equivalent
(see [vM], section 1.3).

It follows easily from proposition 1.3 that all the proper maps in C(X, Y ) form
an open–closed subset of the space C(X, Y ).

Proposition 1.4. Let X and Y be locally compact spaces, K ⊂ X be closed and
h : X → Y be proper map. Then the set A = {g ∈ C(X, Y ) | g � K = h �
K and g is proper} with the subspace topology is Baire space.

Proof. We are to prove that the intersection of the countable family (Ui)i∈N of
dense open sets in A is dense in A. Fix f ∈ A. We show that any neighborhood
of f in A has nonempty intersection with

⋂
i∈N Ui.

Since Y is locally compact, it is also complete. Consequently, for any neigh-
borhood V of f in C(X, Y ) there is a complete metric d on Y such that U = {g ∈
C(X, Y ) | d̂(g, f) ≤ 1} ⊆ V (it follows from the characterization of the topology
on C(X, Y )). Observe that also d̂ is complete and since proper maps comprise
an closed subset of C(X, Y ) and the set {g ∈ C(X, Y ) | g � K = h � K} is also
closed in C(X, Y ), it follows that d̂ is complete also on A. Now we construct a
d̂-Cauchy sequence fi in A that converges to g0 ∈ (U ∩ A) ∩

⋂
i∈N Ui. But that

means that (V ∩ A) ∩
⋂

i∈N Ui 6= ∅, hence f is in closure of
⋂

i∈N Ui in A.
What remains is to show how we construct such a sequence of fi’s. This is

done similarly as in the proof of Baire theorem. By induction we construct a
sequence of positive reals εi and continuous functions fi ∈ A such that (for all
positive integers i)

• d̂(fi, fi+1) < εi < 1/2i−1,

• B(fi+1, εi+1) ⊂ B(fi, εi) ∩ Ui+1,

• B(fi, εi) ⊂ U ∩ U1 ∩ · · · ∩ Ui,

where B(g, δ) denotes an d̂–open ball around g with diameter δ in A. This can
by easily done since each Ui is open and dense in A. It follows that such sequence
is Cauchy, by completeness of d̂ it has a limit, this limit point is in the closure of
every B(fi, εi), so it is in each Ui and also in U∩A. This completes the proof.
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Now we define the mapping cylinder M(f) of the proper surjection f : X → Y
between locally compact spaces X and Y . (We stick to this notation for the rest
of the section.) We put M(f) = X × [0, 1) ∪ Y (we think of X × [0, 1) and Y
being disjoint) endowed following topology:

• on X × [0, 1) we put usual product topology,

• we let basic neighborhoods of y ∈ Y be of the form f−1(U) × (t, 1) ∪ U for
any t ∈ [0, 1) and any open U ⊂ Y containing y.

It is sometimes convenient to think of the mapping cylinder as on the picture 1.1.
Next define the mapping πf : X × I →M(f) by

I

X Y

M(f)

Figure 1.1: The mapping cylinder

πf (x, t) =

{
(x, t) for t ∈ [0, 1),

f(x) for t = 1.

Notice that since f is surjective, also πf is surjective.

Proposition 1.5. For locally compact spaces X and Y and a proper surjection
f : X → Y the topology on mapping cylinder M(f) is the same as quotient
topology with πf : X × I →M(f) as a quotient map.

Proof. We are to prove that for any V ⊂M(f)

π−1
f (V ) is open in X × I ⇐⇒ V is open in M(f).

Take any V ⊂M(f).
First handle the implication “⇐=”. If V ⊂ X× [0, 1), then there’s nothing to

prove, since πf � X × [0, 1) is an identity. So it’s enough to prove it for the sets
of the type f−1(U) × (t, 1) ∪ U for U ⊂ Y open in Y . But then π−1

f (f−1(U) ×
(t, 1) ∪ U) = f−1(U) × (t, 1] and this set is clearly open in X × I.

Now the implication “=⇒”. Again, if V ⊂ X × [0, 1), there’s nothing to
prove. So let V ∩ Y 6= ∅. It’s enough to show that for every y ∈ Y there is a
basic neighborhood of y in M(f) which is contained in V .
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Since f is proper, π−1
f (y) = f−1(y)×{1} is compact set contained in the open

set π−1
f (V ) in X × I. Consequently, there exists ε > 0 and an open W ⊂ X

such that f−1(y) ⊂ W and W × (ε, 1] ⊂ π−1
f (V ). By closedness of f we obtain

an open neighborhood U in Y of y with f−1(U) ⊂ W . But then clearly y ∈
f−1(U) × (ε, 1) ∪ U ⊂ V . We are done.

Proposition 1.6. For locally compact spaces X and Y and proper surjection
f : X → Y the mapping cylinder M(f) is separable metrizable space.

Proof. This is clear, because the topology we defined on M(f) is obviously second
countable, regular and T1.

We give the definition of the collapse to the base mapping. It is the function
c(f) : M(f) → Y defined by letting{

c(f)(y) = y for y ∈ Y,

c(f)(x, t) = f(x) for x ∈ X, 0 ≤ t < 1.

It is obviously continuous and its point-inverses are contractible. Notice that
since f is surjective, also c(f) is surjective.

We finish the discussion of the mapping cylinders by observing that if f is
proper, also πf and c(f) are proper. To see this, consider the following commu-
tative diagram (where proj : X × I → X denotes the projection):

X × I
proj //

πf

��

X

f

��
M(f)

c(f) // Y.

Now, if A ⊂ Y is compact, then c(f)−1(A) = πf (proj−1(f−1(A))) is also compact
by properness of f and the projection. Therefore, c(f) is proper.

IfB ⊂M(f) is compact, then π−1
f (B) is closed subset of proj−1(f−1(c(f)(B))),

which is clearly compact. So also πf is proper.

1.3 Simplicial complexes

Lemma 1.7 (3.6.6). Let T be a simplicial complex and let X be a space. A
function f : |T | → X is continuous iff the restriction of f to every simplex τ ∈ T
is continuous on τ .

Theorem 1.8 (remark after 3.6.12). For every polytope |T | and for every
open cover U of |T | there exists a subdivision S of T such that each simplex
σ ∈ S is contained in an element of U .
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1.4 ANR’s

Theorem 1.9 (5.1.1). Let X be a ANR. Then for every open cover U of X
there exists an open refinement V of U such that for any space Y , any two V-
close continuous maps f, g : Y → X are U-homotopic.

Lemma 1.10 (5.1.7). Let X be a space and let U be an open cover of X.
Then there exists an open refinement V of U such that V is star–finite and star–
refinement of U .

Theorem 1.11 (5.1.8). Let X be an ANR. Then for every open cover U of X
there exists a polytope P such that P U-dominates X.

1.5 The Hilbert Cube

We denote Q = JN (we regard this as a topological power). The topology on Q
can be generated for example by the metric dQ(x, y) = maxn∈N

1
2n |xn − yn|.

Theorem 1.12 (6.4.6). Let A,B ∈ Z(Q) and f : A→ B be a homeomorphism
with d(f, 1Q) < ε for some ε > 0. Then there is a homeomorphism f̄ : Q → Q
extending f such that d(f̄ , 1Q) < ε.

1.6 Bing Shrinking Criterion

Let X and Y be locally compact spaces. We say that a continuous surjection
f : X → Y is shrinkable provided that for every open covers U of X and V of Y
there exists a homeomorphism h : X → X satisfying

• f ◦ h−1 is U -map, i.e. for every y ∈ Y there is U ∈ U with h(f−1(y)) ⊂ U ,

• f and fh are V-close.

We say that the continuous surjection f : X → Y is a near homeomorphism, if
f is in the closure of the H(X, Y ) in C(X, Y ), i.e. for every open cover V of Y
there is a homeomorphism g : X → Y such that f and g are V-close.

Theorem 1.13 (Bing Shrinking Criterion; 6.1.8*). Let X and Y be locally
compact spaces and let f : X → Y be a proper surjection. Then f is a near
homeomorphism iff f is shrinkable.

In the proof, we make use of Bing Criterion for compact spaces; this is the
theorem 6.1.8 in [vM]. We shall use the notation (f, g)V if the maps f, g : X → Y
are V-close for the open cover V of Y .
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Proof. Assume that f : X → Y is a near homeomorphism. We prove that it’s
also shrinkable. Fix U and V . Let V1 be a star-refinement of V (lemma 1.10).
Since we assume that f is a near homeomorphism, there is a homeomorphism
p : X → Y with (f, p)V1 . Now let V2 be the star-refinement of the common open
refinement of V1 and the open cover p(U) (lemma 1.10). Denote by q : X → Y
a homeomorphism with (f, q)V2 and let h = p−1q. We claim that h is required
shrinking homeomorphism.

To see that (f, fh)V , consider the following sequences of implications:

(p, f)V1 =⇒ (1Y , fp
−1)V1 =⇒ (q, fp−1q)V1 ,

(f, q)V2 =⇒ (f, q)V1 .

Since V1 is star-refinement of V , it follows that (f, fp−1q)V , so f and fh are
V-close.

It remains to show that fh−1 = fq−1p is U -map. To this end, fix y ∈ Y . For
any x ∈ f−1(y) we have that there exists a Vx ∈ V2 such that it contains both
y = f(x) and q(x). So all of the Vx’s for x ∈ f−1(y) contain y, and since V2 is
star-refinement of p(U), it follows that there is U ∈ U such that q(x) ∈ p(U) for
all x ∈ f−1(y). In other words, q(f−1(y)) ⊂ p(U), so p−1(q(f−1(y))) ⊂ U , for
some U ∈ U . This finishes the argument.

For the converse implication, assume that f : X → Y is shrinkable and fix an
open cover V of Y . We do the “1-point compactification” trick, as done in [Ch].
Assume that we’re dealing with non-compact X and Y . Denote X̃ = X ∪ {∞}
and Ỹ = Y ∪ {∞} the one-point compactifications of X and Y . Extend f to
f̃ : X̃ → Ỹ by letting f̃(∞) = ∞. It’s clear that f̃ is proper surjection and
moreover, it’s shrinkable (we can use the same shrinking homeomorphisms h for
f , just extend them to h̃ by putting h̃(∞) = ∞). The proof of the compact case
yields the homeomorphism g : X̃ → Ỹ which is as close to f̃ as we wish — i.e.
we can choose it ({Ỹ } ∪ V)-close to f̃ . It is clear from the proof of the compact
case that we can arrange that g(∞) = ∞. If we denote by ḡ the restriction of g
to X, we see that indeed ḡ : X → Y is the homeomorphism which is V-close to
f .
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Chapter 2

Generalized statements

2.1 Fine homotopy equivalences, cell–like maps

A compactum X has trivial shape if for each embedding f of X into an ANR
Z, f(X) is contractible in any of its neighborhoods. Let X and Y be locally
compact spaces and f : X → Y be a continuous map. We say f is a fine
homotopy equivalence if for each open cover U of Y there exists a continuous
map g : Y → X such that g ◦ f : X → X is f−1(U)-homotopic to the identity
on X and f ◦ g : Y → Y is U -homotopic to the identity on Y . Moreover if f
is proper, we define analogously a proper fine homotopy equivalence, in the class
of proper maps. Furthermore, we say that proper f is cell–like if it is onto and
f−1(y) has trivial shape for each y ∈ Y .

In order to give a proof of Haver’s theorem (which says that in the class
of the locally compact ANR’s, cell–like maps are exactly proper fine homotopy
equivalences), we need to formulate the following two statements. Proofs are
given in the book [vM]. First one is just reformulation of the property “having a
trivial shape”.

Theorem 2.1 (7.1.1). Let X be a compact space and let Y be an ANR containing
X. Then the following statements are equivalent:

(a) X has trivial shape,

(b) if U is a neighborhood of X in Y then X is contractible in U .

Lemma 2.2 (7.1.4). Let X be an ANR and let f : X → Y be cell–like. Then for
every y ∈ Y and for every neighborhood U of y in Y there exists a neighborhood
V ⊂ U of y in Y such that f−1(V ) is contractible in f−1(U).

The next statement is the key tool in the proof of Haver’s theorem. The
idea of the proof is taken from [Ha]. For the simplicial complexes, we will not
distinguish between simplex and its geometrical realization.
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Proposition 2.3 (7.1.5*). Let X be a locally compact ANR and let f : X → Y
be cell–like. Moreover, let K be a polytope, L ⊆ K be a subpolytope, and let
φ : K → Y and ψ′ : L → X be continuous mappings with f ◦ ψ′ = φ � L. Then
for every open cover U there is a continuous function ψ : K → X extending ψ′

such that f ◦ ψ and φ are U-close.

Proof. First fix some notation. For locally finite simplicial complex T and any
σ ∈ T we denote N(σ, T ) = {τ ∈ T | σ ∩ τ 6= ∅}, st(σ, T ) = {τ ∈ T | σ ⊆ τ}
and finally jT = {σ ∈ T | |N(σ, T )| ⊂ |T (j)|} for any integer j ≥ 0 (this is the
part of T , which is at most j-dimensional in a sense that all it “touches” is at
most j-dimensional).

Now we inductively construct a sequence U0 > U1 > . . . of open covers of Y
and a sequence K0, K1, . . . of triangulations of K with the following properties:

(1) U0 < U and for every integer i ≥ 1 and every U ∈ Ui there is V ∈ Ui−1

such that f−1(St(U,Ui)) is contractible in f−1(V ) (this is possible: first we
refine Ui−1 according to lemma 2.2, then we let Ui be the star–refinement
of this (lemma 1.10)),

(2) for every integer i ≥ 1 let Ki be a subdivision of Ki−1 subordinated to
φ−1(Ui) (we use theorem 1.8).

Now we define inductively sequence of mappings ψi : K
(i)
i → X, i ≥ 0, with the

following properties (for every integer i ≥ 0):

(3) ψi agrees with ψ′ on K
(i)
i ∩ L and with ψi+1 on iKi,

(4) if σ is a j-simplex in K
(i)
i and k = dim(st(σ,K

(i)
i )), then there is U ∈ Uk−j

with f(ψi(σ)) ∪ φ(σ) ⊂ U ,

(5) for each vertex v ∈ Ki, ψi(v) ∈ f−1(φ(v)).

We show that we can define ψ0 : K
(0)
0 → X. If σ is 0-simplex of K0 then σ is

just a vertex with dim(st(σ,K0)) = 0. So we put ψ0(σ) = ψ′(σ) if σ ∈ L, else
we let ψ0(σ) be any point in f−1(φ(σ)). Then conditions (3) and (5) are clearly
satisfied and (4) holds since f(ψ0(σ)) ∪ φ(σ) = φ(σ) and U0 is an open cover of
Y .

So suppose we already have ψi defined and we are to define ψi+1. We define

it on each simplex of K
(i+1)
i+1 by induction on the dimension, then invoke lemma

1.7 for continuity. (To be more precise, for every simplex σ we define continuous
function ψσ : σ → X and at the end we let ψi+1 be the union of all ψσ’s. But we
abuse the notation and write ψi+1 only.)

First define ψi+1 on vertices v ∈ K
(i+1)
i+1 . If v ∈ L, we put ψi+1(v) = ψ′(v);

if v ∈ iKi, we put ψi+1(v) = ψi(v) (since dim(st(v,K
(i)
i )) = dim(st(v,K

(i+1)
i+1 )),

we see that condition (4) is satisfied by inductive hypothesis). In the remaining
case let ψi+1(v) be any point in f−1(φ(σ)). Again since f(ψi+1(v))∪ φ(v) = φ(v)
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is a point, there clearly exists U ∈ Uk containing it, so (4) is again satisfied.
Conditions (3) and (5) obviously hold.

Suppose we have defined ψi+1 on all simplices of K
(i+1)
i+1 of dimension at most j

and take any (j+1)-simplex σ ∈ K
(i+1)
i+1 . If σ ⊂ L, we put ψi+1 � σ = ψ′ � σ. If σ ⊂

iKi, we put ψi+1 � σ = ψi � σ. In the remaining case let k = dim(st(σ,K
(i+1)
i+1 )).

Observe that i+1 ≥ k− j. Since Ki+1 is subordinated to φ−1(Ui+1) < φ−1(Uk−j),
there is U ∈ Uk−j containing φ(σ). For every proper face τ of σ of dimension j
we have f(ψi+1(τ)) ∪ φ(τ) ⊂ U ′ for some U ′ ∈ Uk−j, by inductive hypothesis (4).
We have φ(τ) ⊂ φ(σ), therefore U ∩ U ′ 6= ∅, so f(ψi+1(τ)) ⊂ U ′ ⊂ St(U,Uk−j).
But τ was arbitrary such face, so we find that f(ψi+1(∂σ)) ∪ φ(σ) ⊂ St(U,Uk−j).
By the construction of Uk−j there exists V ∈ Uk−j−1 such that f−1(St(U,Uk−j))
is contractible in V . By inductive hypothesis ψi+1 is defined on ∂σ and now
we can extend it continuously to the interior of σ with ψi+1(σ) ⊂ V ∈ Uk−j−1

(because ∂σ ≈ Sj, σ ≈ Bj+1 and f−1(St(U,Uk−j)) is contractible in V ). We see
that condition (3) is satisfied, and also (4) holds now for σ. This finishes the
induction.

Observe now, that since K is polytope, so locally finite simplicial complex,
for every point x ∈ K there is a simplex σ and N ∈ N such that x ∈ σ ⊂ NKN .
This means that ψi(x) = ψN(x) for all integers i ≥ N . Hence the function
ψ = limi→∞ ψi is well–defined and continuous from K to X and extends ψ′.
Notice that from (4) it follows that there exists U ∈ Ui with f(ψ(σ))∪φ(σ) ⊂ U ,
for some integer i. Since Ui refines U , we see that f ◦ ψ and φ are U -close. This
finishes the proof.

Theorem 2.4 (Haver’s theorem; 7.1.6*). Let X and Y be locally compact
ANR’s and let f : X → Y be a continuous surjection. Then the following state-
ments are equivalent:

(a) f is cell–like,

(b) f is a proper fine homotopy equivalence.

Proof. First we show (b) =⇒ (a). Since f is clearly proper (and so closed)
surjection, we prove only that f−1(y) has trivial shape for every y ∈ Y . By lemma
2.1 it’s enough to show that f−1(y) is contractible in one of its neighborhoods, say
V . Since f is closed, we have a neighborhood U0 of y in Y with f−1(U0) ⊆ V . Let
U1 = Y \{y}. Then U = {U0, U1} is an open cover of Y , therefore there is a proper
map g : Y → X such that, besides other things, g ◦ f : X → X is proper f−1(U)-
homotopic to the identity, by homotopy say H : X × I → X. Now if x ∈ f−1(y),
then x 6∈ f−1(U1), so H({x} × I) ⊂ f−1(U0) ⊆ V . So H � V × I : V × I → X is
proper homotopy such that H0 = 1V and H1(x) = g ◦f(x) = g(y) for x ∈ f−1(y).
So this homotopy contracts f−1(y) in V to a point.

Now we prove (a) =⇒ (b). First let V be common open refinement of the
following open covers of Y :

13



• U ,

• an open cover V1 of Y whose existence follows from proposition 1.3 (“in
particular” part),

• an open cover V2 of Y whose existence again follows from proposition 1.3
(so any two f−1(V2)-close maps into X are either both proper or both not).

Now let U1 be St2–refinement of V , U2 be St–refinement of U1 and U3 be a re-
finement of U2 which exists by theorem 1.9, i.e. any two U3-close maps are U2-
homotopic. Now let K be a polytope which U2-dominates Y and let η : K → Y
and ξ : Y → K be witnesses for this, i.e. η ◦ ξ is U2-homotopic to 1Y .

By previous proposition 2.3 there exists a map α : K → X such that f ◦ α
and η are U3-close. We put g = α ◦ ξ. The situation is:

X
f //

Y
g

oo

ξ
��

K

η

OO

α

``AAAAAAAA

Since for any y ∈ Y we have f ◦ g(y) = f ◦ α(ξ(y)) and f ◦ α and η are U3-close,
it follows that there exists U ∈ U3 containing both f ◦ α(ξ(y)) and η(ξ(y)). In
other words, also f ◦ g and η ◦ ξ are U3-close, therefore U2-homotopic. So we have

fg ∼U2 ηξ ∼U2 1Y .

Since U2 is star-refinement of U1, fg and 1Y are U1-homotopic (so also V1- and
U -homotopic). Let h : Y × I → Y be a witness for this fact, so it’s a homotopy
limited by U1 with h0 = 1Y and h1 = fg. Let us remark that since 1Y is obviously
proper and h is limited by V1, it follows that the whole homotopy h is proper.

Now we aim at showing that gf is f−1(U)-homotopic to 1X . Let W be a com-
mon open refinement of f−1(U1) and (gf)−1(f−1(U1)). Now let L be a polytope
W-dominating X by maps β : X → L and γ : L→ X. So γ ◦ β is W-homotopic
(so also f−1(U1)-homotopic) to 1X by a homotopy, say H : X × I → X. In
particular, H is limited by (gf)−1(f−1(U1)), so gfH : X × I → X is a homotopy
joining gfγβ with gf limited by f−1(U1). Summarizing, so far we have

gf ∼f−1(U1) gfγβ, γβ ∼f−1(U1) 1X . (2.1)

Now define a map F : L × I → Y by F (x, t) = h(fγ(x), t). It’s clearly
continuous, F0 = fγ and F1 = fgfγ. Next define G′ : L × {0, 1} → X by
expression G′(x, 0) = γ(x) and G′(x, 1) = gfγ(x). Again, it’s clearly continuous
and the diagram

X
f // Y

L× {0, 1}
G′

OO

� � // L× I

F

OO
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commutes. Observe that L × I is a polytope and L × {0, 1} is its subpolytope.
Applying previous proposition 2.3 we get a continuous extension G : L× I → X
of G′ such that f ◦G and F are U1-close.

Define a continuous map Ψ : X × I → X by Ψ(x, t) = G(β(x), t). We have

Ψ(x, 0) = G(β(x), 0) = G′(β(x), 0) = γ(β(x))

and
Ψ(x, 1) = G(β(x), 1) = G′(β(x), 1) = gfγ(β(x)),

so Ψ is a homotopy on X joining γβ and gfγβ.
We prove that Ψ is limited by St(f−1(U1)). It’s enough to prove that f ◦Ψ is

limited by St(U1). Fix x ∈ X. For any y ∈ Y there is some set in U1 containing
h({y} × I), so in particular h({fγβ(x)} × I) ⊂ U for some U ∈ U1. But for
any t ∈ I, h(fγβ(x), t) = F (β(x), t) and since f ◦ G and F are U1-close, there
is U ′ ∈ U1 containing both F (β(x), t) and f ◦ G(β(x), t) = f ◦ Ψ(x, t). So
f ◦Ψ(x, t) ∈ St(U). Since t ∈ I was arbitrary, we obtain f ◦Ψ({x}× I) ⊂ St(U).
This is what we needed.

Putting gfγβ ∼St(f−1(U1)) γβ together with (2.1) we have at last that g ◦ f
and 1X are St2(f−1(U1))-homotopic, therefore they are also f−1(U)- and f−1(V2)-
homotopic, by the definition of U1. It follows that the homotopy joining proper
map 1X and g ◦ f is whole proper.

It remains to show that also g is proper. But notice that for any compact
K ⊂ X we have g−1(K) = f(f−1(g−1(K))) = f((gf)−1(K)), which is compact
by continuity of f and properness of gf . We are done.

Haver’s theorem has some corollaries.

Corollary 2.5 (7.1.7*). Let X and Y be locally compact ANR’s and let f : X →
Y be cell-like. In addition, let A ⊂ Y be compact. If U is a neighborhood of A in
Y such that A is contractible in U then f−1(A) is contractible in f−1(U).

Proof. Put B = f−1(A). Let H : A × I → U be the homotopy which contracts
A to a point. Denote A′ = H(A × I). By compactness, A′ is a closed subset of
U . Take any open cover U of U consisting of subsets of U . By the theorem 2.4,
there exists a proper map g : Y → X such that

(1) f ◦ g is proper U -homotopic to 1Y ,

(2) g ◦ f is proper f−1(U)-homotopic to 1X .

We show that g(A′) ⊂ f−1(U). Take any a ∈ A′. By (1) we have some V ∈ U
with {a, fg(a)} ⊂ V . But then g(a) ∈ f−1(V ) ⊂ f−1(U). We are done.

By (2) there exists a f−1(U)-homotopy S : B × I → X such that S0 = 1B

and S1 = (g ◦ f) � B. Clearly S(B × I) ⊂ f−1(U).
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Define T : B × I → X as T = g ◦H ◦ (f × 1I). T is a homotopy connecting
(g ◦ f) � B with a constant function. Moreover T (B × I) ⊂ g ◦ H(A × I) =
g(A′) ⊂ f−1(U).

We finish the proof by the observation that by “attaching” T to S we obtain
required contraction of f−1(A) to a single point in f−1(U).

Corollary 2.6 (7.1.8*,7.1.9*). Let X and Y be locally compact ANR’s and let
f : X → Y be cell-like. If a compactum K ⊂ Y has a trivial shape then f−1(K)
has trivial shape. Therefore, any finite composition of cell-like maps between
locally compact ANR’s is also cell-like.

Proof. Just apply the corollary 2.5 and the theorem 2.1.

2.2 Z-Sets in ANR’s

We modify a few statements from the book.

Theorem 2.7 (7.2.5*). Let X be an ANR and let A ⊂ X be closed. The
following statements are equivalent:

(a) A ∈ Z(X),

(d) for every open cover U of X there exists a continuous function f : X →
X −A such that f and 1X are U-close. This f can be chosen to be proper.

The only change against the book is that f can be proper. But this is clear
by proposition 1.3.

Lemma 2.8 (7.2.7*). Let X be a locally compact ANR and let A ∈ Zσ(X). If
K is the locally compact space and K0 is its closed subset, then for every open
cover U of X and every proper function f : K → X there is a proper function
g : K → X such that

(1) f and g are U-close,

(2) f � K0 = g � K0,

(3) g(K −K0) ∩ A = ∅.

Proof. Let A =
⋃∞

n=1An, where each An is a Z-set in X and let K − K0 =⋃∞
n=1Kn, where each Kn is compact (this is possible since K − K0 is locally

compact).
Let A = {g ∈ C(X, Y ) | g � K0 = f � K0 and g is proper}. According to the

proposition 1.4, it is Baire space. Now for n,m ≥ 1 define

An,m = {g ∈ A | g(Kn) ∩ Am = ∅}.
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We prove that these sets are open and dense in A. Since Kn is compact, g(Kn)
is closed, also Am is closed, therefore we easily see that An,m is open.

For proving that An,m is dense in A, fix g ∈ A and an open cover V of of X.
By proposition 1.3 it is clear that without loss of generality we can assume that
all V-close maps to g in C(K,X) are proper. Now let V0 be an open refinement
of V such that any two V0-close maps to X are V-homotopic (theorem 1.9). By
theorem 2.7 there exists a proper function ξ : X → X − Am which is V0-close to
1X . But then also ξ ◦ g and g are V0-close and therefore they are V-homotopic
by homotopy, say H : K × I → X.

Let α : K → I be an Urysohn function with α � K0 = 0 and α � Kn = 1.
Define g′ : K → X by g′(x) = Hα(x)(x). We see that g′ is V-close to g (because
the whole homotopy H is limited by V) and for x ∈ K0 we have g′(x) = H0(x) =
g(x) = f(x). It follows that g′ is proper and g′ ∈ A. Moreover g′(Kn) =
H1(Kn) = ξ(g(Kn)), so g′(Kn) misses Am. Consequently, we have g′ ∈ An,m, and
since g′ ∈ N(g,V) we have at last that An,m is dense in A.

It follows that

B =
∞⋂

n=1

∞⋂
m=1

An,m

is dense in A. Now it suffices to take any map from B that is in the neighborhood
N(f,U) (such a map exists due to denseness of B).

Proposition 2.9 (7.2.10*). Let X and Y be locally compact ANR’s and let
f : X → Y be cell-like. Then for each A ∈ Z(Y ), each neighborhood V of f−1(A)
and each open covering U of Y there is a proper homotopy α : X×I → X having
the following properties:

(1) α is limited by f−1(U),

(2) α0 = 1X and α1(X) ∩ f−1(A) = ∅,
(3) every αt (t ∈ I) restricts to the identity on X − V .

Changes in the proof against the book. The open covers E and F will be not finite
anymore, but we do not need this fact in the proof. We remark that for F to
have the property marked in the book by (1) we need ξ(Y ) to be closed, but this
is clear because we can choose ξ to be proper, and so closed (theorem 2.7). The
rest of the proof does not need further changes.

To ensure the properness of α, notice that by proposition 1.3 we can without
loss of generality assume that any f−1(U)-close map to (the proper map) 1X is
also proper. Now from (1) follows properness of α.

Proposition 2.10 (7.2.12*). Let X and Y be locally compact ANR’s and let
f : X → Y be cell-like. If A ⊂ Y is such that f−1(A) ∈ Z(X) then A ∈ Z(Y ).

The proof given in the book works well also here, without any change. (Of
course, we reference to generalized statements.)
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2.3 The reformulation of the disjoint-cells pro-

perty

We say that a map f : X → Y between spaces X and Y is approximable by maps
having some property P , if in every neighborhood of f in the space C(X, Y )
(endowed with the topology described in the section 1.2) there is a map having
property P . In other words, for every open cover U of Y there is a map g ∈
C(X, Y ) having property P such that f and g are U -close.

We say that a space X has disjoint-cells property if for every n ∈ N, every
continuous function f : In×{0, 1} → X is approximable by maps sending In×{0}
and In × {1} to disjoint sets. We say that a space X has the Z-approximation
property, if for every n ∈ N, every continuous map f : In → X can be approxi-
mated by Z-maps.

Proposition 2.11 (7.3.2). Let X be a topologically complete space. The follow-
ing statements are equivalent:

(a) X has the disjoint-cells property,

(b) C(Q,X) contains a countable dense set consisting entirely of Z-maps,

(c) C(Q,X) contains a countable dense set consisting entirely of Z-maps having
pairwise disjoint images,

(d) every continuous function f : Q→ X is approximable by Z-maps,

(e) X has the Z-approximation property.

The last proposition is just as in the book, the following two corollaries are
generalized; though the proofs are the same as in the book, so we shall not give
them here.

Corollary 2.12 (7.3.3*). Let X be a locally compact ANR. Then the following
statements are equivalent:

(a) X has the disjoint-cells property,

(b) if K is any locally compact space then any proper map f : K → X can
be approximated by proper maps g, h : K → X having the property that
g(K) ∩ h(K) = ∅.

Corollary 2.13 (7.3.4*). Let X be a locally compact ANR with the disjoint-
cells property. If K is the locally compact space and if E,F,G ⊆ K are pairwise
disjoint closed subsets of K then any proper map f : K → X such that f � G is
a Z-map can be approximated by proper maps g : K → X such that

(1) g(E), g(F ) and g(G) are pairwise disjoint,

(2) g � G = f � G.
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Now we add a few more equivalent statements to those in the theorem 7.3.5
(the main theorem in this section).

Theorem 2.14 (7.3.5*). Let X be a locally compact ANR. The following state-
ments are equivalent:

(a) X has the disjoint-cells property,

(h) for every locally compact space K, every proper map f : K → X is approx-
imable by Z-embeddings,

(i) for every locally compact space K and closed subset K0 ⊂ K and for every
Z ∈ Zσ(X), every proper map f : K → X such that f � K0 is a Z-
embedding, is approximable by Z-embeddings g : K → X such that f �
K0 = g � K0 and g(K −K0) ⊂ X − Z.

Proof. Let us remark that (h) and (i) are analogies to (e) and (g) from the
theorem.

Implications (i) =⇒ (h) =⇒ (e) are trivialities.
We shall prove (a) =⇒ (i). By proposition 2.11 there exists a countable dense

subset F ⊂ C(Q,X) consisting entirely of Z-maps. Put

A = {g ∈ C(X, Y ) | g � K0 = f � K0 and g is proper}.

This is Baire space by proposition 1.4.
Let B be an open countable basis for the topology of K − K0 such that for

every B ∈ B the set B is compact (this is possible since K−K0 is locally compact
and second countable). For each pair A,B ∈ B with A ∩B = ∅ define

EA,B = {g ∈ A | g(A), g(B) and g(K0) are pairwise disjoint}. (2.2)

By corollary 2.13 each EA,B is dense in A and it is clearly open.
Write Z =

⋃
n∈N Zn, where each Zn is a Z-set in X. For B ∈ B, h ∈ F and

n ∈ N let
FB,h,n =

{
g ∈ A | g(B) ∩ (h(Q) ∪ Zn) = ∅

}
. (2.3)

Since B ⊂ K −K0 and h(Q) ∪ Zn is a Z-set, lemma 2.8 implies that each FB,h,n

is dense in A. It is also open in A, because g(B) and h(Q) ∪ Zn are both closed
in X.

Now, it is clear that the collection of all FB,h,n’s, as well as the collection of
all EA,B’s, is clearly countable. It follows that

G =
⋂

A,B∈B EA,B ∩
⋂

B∈B,h∈F,n∈N FB,h,n

is also dense in A. By (2.2) we have that g is an embedding. By (2.3) it is
clear that for any g ∈ G we have g(K − K0) ⊂ X − Z. Furthermore, for each
such g ∈ G we have g(K −K0) ∩

⋃
h∈F h(Q) = ∅, so by denseness of F , g(K) =

g(K −K0) ∪ f(K0) is closed and satisfies the definition of Z-set. Therefore g is
Z-embedding. This finished the proof, since we see that any map g ∈ G close to
f has required properties.
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Theorem 2.15 (7.3.6). (1) If a space X has the disjoint-cells property then for
any space Y , X × Y has the disjoint-cells property.

(2) Every Q-manifold is an ANR and has the disjoint-cells property.

2.4 Z-sets in Q-manifolds

Corollary 2.16 (7.4.4). (1) If M and N are Q-manifolds and M ⊆ N is a
Z-set, then M is collared in N .

(2) If M is Q-manifold then M × [0, 1) is homeomorphic to an open subset of
Q.

Theorem 2.17 (7.4.5*). Let M be a Q-manifold. If A ∈ Z(M) then there is a
neighborhood of A which is homeomorphic to an open subset of Q.

The proof of this theorem is identical with that one in the book.

Lemma 2.18 (7.4.6). Let A,B ∈ Z(Q). Then for every neighborhood V of B
and for every open cover U of V there is an isotopy H : Q× I → Q such that

(1) H0 = 1Q and H1(B) ∩ A = ∅,
(2) Ht � Q− V = 1Q−V for every t ∈ I,

(3) H � V × I → V is limited by U .

Now we aim at the Z-set unknotting theorem for locally compact spaces. First
we need one definition and series of lemmas. If X is a space and r : X → I is a
continuous map, then we define the variable product

X ×r I =
⋃

{{x} × [0, r(x)] | x ∈ X} ⊂ X × I.

Lemma 2.19. Let V ⊆ Q be open, A a locally compact space, U an open cover
of V and F : A × I → V be Z-embedding and let r, s : A → [1

2
, 1] be continuous

maps such that the set

D = {a ∈ A | r(a) 6= s(a)}

has compact closure. Then there exists an isotopy H : Q × I → Q such that
H0 = 1Q and H1 takes F (A×r I) to F (A×s I) by the formula

H1(F (a, t)) = F (a, t · s(a)
r(a)

)

for all (a, t) ∈ A ×r I. Moreover, if F is limited by U , then we may construct
H in such a way that Ht � Q − V = 1Q−V for all t ∈ I and H � V × I → V is
limited by U .

20



Q
V

F (A × I)

F (A ×r I)

Figure 2.1: The variable product

Proof. Denote ~Q =
∏∞

i=2 J and regard Q = ~Q× [−1, 2]. Put A in some endface

of ~Q, so A ∈ Z( ~Q). Consequently, A×I ∈ Z(Q). By the extension theorem 1.12
there exists a homeomorphism f : Q → Q extending F−1 : F (A× I) → A× I.

The idea for the rest of the proof is simple: first we take F (A× I) to A× I ⊂
~Q × [−1, 2] by f . Now we perform a “simple push in [-1,2]–coordinate” which
takes A ×r I to A ×s I. We realize this by an isotopy G : Q × I → Q which
is identity everywhere except on possibly N × [−p, 1 + p] (where N ⊂ A is any
compact neighborhood of D and choice of p is explained later on). After this, we
take the situation back to original position by f−1.

~Q
−1

2

0

1

−p

1 + p

A

N

Figure 2.2: The isotopy G

We give the details of the construction of G. Assume that F is limited by
U and assume that U consists of subsets of V . Recall that N is compact neigh-
borhood of D. It follows from these facts that there exists p ∈ (0, 1) such that

for any x ∈ N : {x} × [−p, 1 + p] ⊂ f(U) for some U ∈ U . (∗)
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Let G : Q× I → Q be defined by

Gy(x, t) = (x, ty s(x)
r(x)

+ t(1 − y)) for (x, t) ∈ N × [0, r(x)]

Gy(x, t) = (x, t+ y(s(x) − t+ 1+p−s(x)
1+p−r(x)

(t− r(x)))) for (x, t) ∈ N × [r(x), 1 + p]

Gy(x) = x for x ∈ Q− (N × [0, 1 + p])

A straightforward check shows that G is indeed an isotopy which has all the
required properties. Now H = f−1 ◦G ◦ f is the one we seek.

Remark. It follows from the construction of G that H moves points only “along
the segments” {x}× [−p, 1 + p] for x ∈ N . This fact, together with the condition
(∗), shows that not only that H is limited by U , but

F ({x} × I) ⊂ U ∈ U =⇒ H(F ({x} × I) × I) ⊂ U.

We shall make use of this fact later on.

Lemma 2.20. Let V ⊆ Q be open, A a locally compact space, U be an open cover
of V and F : A× I → V be a proper map such that F0 and F1 are Z-embeddings
and F0(A) ∩ F1(A) = ∅. Then there exists an isotopy H : Q× I → Q such that
H0 = 1Q, H1F0 = F1 and Ht � Q − V = 1Q−V for all t ∈ I. Moreover, if F is
limited by U , then we may construct H in such a way that H � V × I → V is
limited by U .

Proof. By theorem 2.14 we can approximate F by Z-embeddings F̄ such that
F̄0 = F0 and F̄1 = F1. So without loss of generality we may assume that F is a
Z-embedding. Furthermore, assume that U consists of subsets of V and that F
is limited by U .

We construct an isotopy H which has all the required properties except that
H1F1 = F0 instead of H1F0 = F1. But it is clear that this suffices. The idea of
the proof is that we make use of the previous lemma to move F1 to F0 “piece by
piece”. First we push F1 to F1/2 and then apply the same construction to move
F1/2 to F1.

We write A =
⋃

n∈NAn, where all An’s are compact and An ⊂ intAn+1 for
n ∈ N. Construct a sequence of continuous functions rn : A → [1

2
, 1] with the

following properties (for all n ∈ N):

• rn(A4n − intA4n−1) ⊂ {1
2
},

• rn((A− intA4n+1) ∪ A4i−2) ⊂ {1}.

Such functions are just a little bit modified Urysohn functions for appropriate
sets. In addition, define r0 : A → I by r0 ≡ 1. The previous lemma gives us a
sequence of isotopies Gn : Q × I → Q such that the following conditions hold
(for each n ∈ N):
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Figure 2.3: The graph of rn

• Gn is limited by U (in a sense of the remark after 2.19),

• Gn
t is an identity on Q− V for every t ∈ I,

• Gn
0 = 1Q and Gn

1 takes F (A×r0 I) to F (A×rn I).

Now let
G(1) = lim

n→∞
Gn ◦Gn−1 ◦ · · · ◦G1.

It is clear from the construction of the Gn’s that each point of Q is moved only
by at most one of them, so the limit is well-defined. Moreover, for every t ∈ I,
G

(1)
t is an identity on Q − V and G

(1)
1 takes F (A ×1 I) to F (A ×r I), where

r(x) = 1 +
∑∞

i=1(rn(x)− 1). Notice that for every x ∈ A, at most one of the rn’s
is not equal to 1, so the sum is well-defined. Furthermore, G(1) is limited by U
in a sense of the remark after the lemma 2.19.

1
1
2

0 A4n−7
A4n−6

A4n−5
A4n−4

A4n−3
A4n−2

A4n−1
A4n

A4n+1
A4n+2

A4n+3
A4n+4

A4n+5
A

...

r

Figure 2.4: The graph of r

We put

s1(x) =

{
r(x) for x ∈ A− A3,
1
2

for x ∈ intA4,

and for n ≥ 2 we define

sn(x) =

{
r(x) for x ∈ intA4n−4 ∪ (A− A4n−1),
1
2

for x ∈ intA4n − A4n−6.

It is easy to see that each sn : A → [1
2
, 1] is continuous, since both cases in the

definition are on the open sets and they agree on the intersection. In addition,
define s0 : A→ I by s0 ≡ 1

2
. We again use the previous lemma to get a sequence

of isotopies ′Gn : Q× I → Q with the properties (for every n ∈ N):
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Figure 2.5: The graph of sn

• ′Gn is limited by U (in a sense of the remark after 2.19),

• ′Gn
t is an identity on Q− V for every t ∈ I,

• ′Gn
0 = 1Q and ′Gn

1 takes F (A×sn I) to F (A×s0 I).

We put
G(2) = lim

n→∞
′Gn ◦ · · · ◦ ′G1.

Again, G(2) has all the properties as G(1) except that G
(2)
1 takes F (A ×r I) to

F (A×1/2 I).
We define an isotopy G : Q× I → Q by

Gt =

{
G

(1)
2t for t ∈ [0, 1

2
]

G
(2)
2t−1 ◦G

(1)
1 for t ∈ [1

2
, 1].

It clearly has the properties as G(1), except that G1 takes F (A×1 I) to F (A×1/2).
Consequently, G1F1 = F1/2. We can use the fact in the remark following the
lemma 2.19 to see that G is indeed limited by U in a sense of this remark.

By the analogous construction we obtain an isotopy K : Q × I → Q which
fulfills:

• for every t ∈ I, Kt is identity on Q− V ,

• is limited by U (in a sense of the remark after 2.19),

• K0 = 1Q and K1F1/2 = F0.

Now just put

Ht =

{
G2t for t ∈ [0, 1

2
]

K2t−1 ◦G1 for t ∈ [1
2
, 1]

It is clear that H has all the required properties.

Lemma 2.21 (7.4.8*). Let V ⊆ Q be open, A a locally compact space, U be an
open cover of V and F : A × I → V be a proper map such that F0 and F1 are
Z-embeddings. Then there exists an isotopy H : Q× I → Q such that H0 = 1Q,
H1F0 = F1 and Ht � Q−V = 1Q−V for all t ∈ I. Moreover, if F is limited by U ,
then we may construct H in such a way that H � V × I → V is limited by U .
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Proof. The idea behind this proof is that first we move F0(A) away from F1(A)
by sufficiently “small” isotopy (lemma 2.18), and then apply previous lemma.

Assume that U consists of subsets of V and that F is limited by U . We claim
that there is an open cover V of F0(A) with the property

(1) for all V ∈ V and x ∈ A with F0(x) ∈ V there exists U ∈ U such that
V ∪ F ({x} × I) ⊂ U .

To this end, take x ∈ A. Since F is limited by U , there is Ux ∈ U with F ({x} ×
I) ⊂ Ux. Consequently, F−1(Ux) is an open neighborhood of {x} × I in A × I.
By compactness of I, there exists an open neighborhood Wx of x in A such that
Wx×I ⊂ F−1(Ux). Since F0 is an embedding, F0(Wx) is an open neighborhood of
F0(x) in F0(A). Consequently, there is an open set Vx in M such that Vx∩F0(A) ⊂
F0(Wx) ∩ Ux. Put V = {Vx | x ∈ X}. To verify the condition (1), notice
that if F0(y) ∈ Vx for some y ∈ A, we have that y ∈ Wx and consequently
F ({y} × I) ⊂ Ux. Since Vx ⊂ Ux, the argument is finished.

Denote V ′ =
⋃

V . Notice that V ′ ⊂ V . By lemma 2.18 there is an isotopy
S : Q× I → Q such that

• S0 = 1Q and S1(F0(A)) ∩ F1(A) = ∅,

• St � Q− V ′ = 1Q−V ′ for every t ∈ I,

• S � V ′ × I → V ′ is limited by V .

Define F̃ : A× I → Q by

F̃ (x, t) =

{
S1−2t(F0(x)) for t ∈ [0, 1

2
],

F2t−1(x) for t ∈ [1
2
, 1].

In fact, F̃ is just S “backwards” followed by F . Using (1) it is easy to see that F̃ is
limited by U . More precisely, for x ∈ A there is V ∈ V containing S(F0(x)×I), in
particular containing also S0(F0(x)) = F0(x). Consequently, there exists U ∈ U
such that F ({x} × I) ∪ V ⊂ U . But then also H({x} × I) ⊂ U .

It is clear that F̃0(A) ∩ F̃1(A) = ∅. Therefore, by lemma 2.20 there exists an
isotopy T : Q× I → Q such that

• T0 = 1Q and T1F̃0 = F̃1,

• Tt � Q− V = 1Q−V for every t ∈ I,

• T � V × I → V is limited by U (in a sense of the remark after 2.19).

Now define H : Q× I → Q by

H(x, t) =

{
S2t(x) for t ∈ [0, 1

2
],

T2t−1(S1(x)) for t ∈ [1
2
, 1].
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We see that H0 = 1Q and

H1F0 = T1S1F0 = T1F̃0 = F̃1 = F1.

Since both S and T are identities on Q− V , we have that Ht � Q− V = 1Q−V .
It remains to show that H � V × I is limited by U , but this is easily done by

similar argument as for F̃ (using (1) and the remark after the lemma 2.19).

Theorem 2.22 (The Z-set unknotting theorem; 7.4.9*). Let M be a Q-
manifold, U be an open cover of M and V ⊂ M be open. If A is the locally
compact space and if F : A× I → V is a proper homotopy limited by U such that
F0 and F1 are Z-embeddings, then there exists an isotopy H : M×I →M limited
by U such that H0 = 1M , H1F0 = F1 and Ht � M − V = 1M−V for every t ∈ I.

Proof. The strategy is that we reduce the situation in a Q-manifold to the situ-
ation in the Hilbert Cube using theorem 2.17.

On A× I we define an equivalence relation ∼ by the statement

(x, 0) ∼ (y, 1) iff F0(x) = F1(y).

It is clear that we have well-defined continuous map F/∼ : (A × I)/∼ → M
which is Z-embedding on A × {0, 1}/∼. By the theorems 2.15 and 2.14 we can
now approximate F/∼ by Z-embeddings from (A× I)/∼, and it’s clear that we
can use them to construct Z-maps G : A×I →M approximating F with G0 = F0

and G1 = F1.
So we may assume without loss of generality that F (A × I) is Z-set in M .

By theorem 2.17 there is a neighborhood U1 of F (A× I) which is homeomorphic
to an open subset of Q. By abuse of notation we assume that U1 is an open
subset of the Hilbert cube. Then W1 = U1 ∩ V is an open set (in U1) containing
F (A× I). Consequently, there exists an open neighborhood W of the closed set
F (A × I) such that F (A × I) ⊂ W ⊂ W ⊂ W1. (This is easy, just take an
Urysohn function u : M → I such that u � F (A × I) ≡ 1 and u � W1 ≡ 0; then
put W = u−1((1

2
, 1]).) Using theorem 2.7 twice we have that F (A × I) ∈ Z(Q).

We denote V = {U ∩ W | U ∈ U}. By lemma 2.21 there exists an isotopy
G : Q × I → Q such that G0 = 1Q, G1F0 = G1, Gt � Q − W = 1Q−W and
G : W × I → W is limited by V . It follows that the mapping H : M × I → M
defined by

H(x, t) =

{
G(x, t) for x ∈ W,

x for x ∈M −W

is an isotopy limited by U which fulfills our requirements.

2.5 The proof Toruńczyk’s Theorem

Lemma 2.23 (7.5.1*). Let X be a locally compact space such that X ×Q ≈ X.
Then the projection π : X × J → X is a near homeomorphism.
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The proof of this lemma is exactly the same as in the book.
Now we prove some statements about the mapping cylinders. We use the

same notation as introduced in the section 1.2.

Lemma 2.24 (7.5.2*). Let M be a Q-manifold, let X be a locally compact
ANR and let f : M → X be cell-like. Then πf : M × I → M(f) is a near
homeomorphism.

Proof. We make use of Bing Shrinking Criterion 1.13. Since πf is proper surjec-
tion, it’s enough to prove that it’s shrinkable. So, fix an open cover U of M × I
and an open cover V of M(f). We produce a homeomorphism h : M×I →M×I
such that

(1) πf and πf ◦ h are V-close,

(2) for every x ∈ X there exists a U ∈ U with h(f−1(x) × {1}) ⊂ U .

Since πf � M × [0, 1) is one-to-one, h will be desired shrinking homeomorphism.
For convenience, we identify M with M × {1}.

Let V1 be open star-refinement of V and let V2 = {V ∩X | V ∈ V1}. It is an
open cover of X. By the theorem 2.15 M is the locally compact ANR with the
disjoint-cells property. Since f : M → X is cell-like, by the theorem 2.4 there
exists a proper map g : X →M such that

(3) g ◦ f is proper f−1(V2)-homotopic to 1M ,

(4) f ◦ g is proper V2-homotopic to 1X .

By the theorem 1.9 there is an open refinement U1 of f−1(V2) such that any two
U1-close maps into M are f−1(V2)-homotopic. Moreover, let U2 be the open cover
whose existence follows from the proposition 1.3, so any two U2-close maps into
M are both proper or both not. Finally, let U3 be common open refinement of
U1, U2 and St(U).

By the theorem 2.14, a proper map g ◦ f : M → M is approximable by Z-
embeddings. So there exists a continuous map ξ : M → M which is U3-close to
g ◦ f . It follows that it has the following properties:

(5) ξ is Z-embedding,

(6) ξ is proper f−1(V2)-homotopic to g ◦ f ,

(7) for every x ∈ X there is some U ∈ U such that ξf−1(x) ⊂ U .

Observe that (7) is true since (g ◦ f)(f−1(x)) is one-point set for every x ∈ X
and g ◦ f and ξ are St(U)-close.

By (3) and (6) we have

ξ ∼f−1(V2) g ◦ f ∼f−1(V2) 1M .
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Since πf � M = f and V1 is star-refinement of V , it follows that ξ ∼π−1
f (V) 1M by a

proper homotopy. Notice that also 1M : M →M ⊂M×I is a Z-embedding. Now
use the unknotting theorem 2.22 to produce a homeomorphism h : M×I →M×I
such that

(8) h ◦ 1M = ξ (i.e. h � M = ξ),

(9) h and 1M×I are π−1
f (V)-close.

(It is the 1-level of the isotopy that exists by the theorem.) It remains to check
that h is the required shrinking homeomorphism. But by (9) it’s clear that (1)
holds. Moreover, by (8) h extends ξ and finally (7) ensures the property (2). We
are done.

Corollary 2.25 (7.5.3*). Let M be a Q-manifold, let X be a locally compact
ANR and let f : M → X be cell-like. Then M(f) is a Q-manifold.

Proposition 2.26 (7.5.4*). Let M be a Q-manifold, let X be a locally compact
ANR and let f : M → X be cell-like. Then for every Y ∈ Z(X) and an open
cover F of X there is a near homeomorphism g : M(f) →M(f) such that

(1) c(f) ◦ g and c(f) are F-close,

(2) g � g−1(Y ) = c(f) � c(f)−1(Y ).

Proof. We recall that we think of M and X as being the subspaces of M(f). Let
Z be the space we obtain from M(f) by identifying each set of the form c(f)−1(y),
y ∈ Y , to a single point (Z is something like reduced mapping cylinder; see figure
2.6). Let q : M(f) → Z be a quotient map and let q1 : Z → X be such continuous
surjective map that the following diagram commutes:

M(f)
q //

c(f) ""FFFFFFFF Z

q1

��
X.

Notice that q is obviously surjective and since for any compact A ⊂ Z, q−1(A) is
closed subset of compact set c(f)−1(q1(A)), q is also proper.

The next step of the proof we formulate as a lemma.

Lemma 2.27. We assume the situation as in the proof. For every open cover
U of Z and V of M(f) we shall construct a homeomorphism h : M(f) → M(f)
such that

(3) q ◦ h and q are U-close,

(4) h � X = 1X ,

(5) for every y ∈ Y there is V ∈ V with h(c(f)−1(y)) ⊂ V .
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I

M

Y

X

M(f)

c(f)−1(Y )

q //

Y

Z

Figure 2.6: Reduced mapping cylinder

Since the fibers of q are exactly the sets c(f)−1(y) for y ∈ Y , (3) and (5),
according to Bing Shrinking Criterion 1.13, give us the fact that q is a near
homeomorphism. We shall use the fact (4) later on.

Proof of the lemma. First we shall construct a homeomorphism h1 : M(f) →
M(f) which takes c(f)−1(Y ) away from M . For every y ∈ Y choose its open
neighborhood Wy in X such that c(f)−1(Wy) ⊆ q−1(U) for some U ∈ U . This can
be easily done: choose U ∈ U such that y ∈ U ; q−1(U) is an open neighborhood
of the set q−1(y) = c(f)−1(y); now existence of such Wy follows from closedness
of the mapping c(f).

Put W = {Wy | y ∈ Y } ∪ {X − Y }. This is an open cover of X. Let W ′ be
its open refinement such that

• W ′ ∗
<W and W ′ ∗

< V ,

• W ′ is star-finite,

• every W ∈ W ′ has compact closure.

By the proposition 2.9 there exists a proper homotopy α : M × I →M such that

(6) α is limited by f−1(W ′) (= {c(f)−1(W ) ∩M | W ∈ W ′}),

(7) α1(M) ∩ f−1(Y ) = ∅ (= α1(M) ∩ c(f)−1(Y )),

(8) α0 = 1M .

By the theorem 2.15, M is the locally compact ANR, by the theorem 2.14 we can
approximate α1 by embeddings, and by the theorem 1.9 “close” maps into ANR’s
are homotopic by “small” homotopy. Moreover, by the proposition 1.3, maps
“close” to proper are also proper. Putting these facts together, we may assume
that α1 is an embedding.

The sets M×{0} and M×{1
2
} are clearly Z-sets in the Q-manifold M× [0, 1

2
].

By the theorem 2.22 there exists a homeomorphism h̄1 : M × [0, 1
2
] →M × [0, 1

2
]

such that (it’s indeed the 1-level of the isotopy mentioned by the theorem):

(9) h̄1 � M × {1
2
} = 1M×{ 1

2
},
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(10) h̄1(α1(M) × {0}) = M × {0},

(11) h̄1 and 1M×[0, 1
2
] are E-homotopic, where

E = {c(f)−1(W ) ∩ (M × [0, 1
2
]) | W ∈ W ′}.

Finally, we let h1 : M(f) → M(f) be the union of h̄1 : M × [0, 1
2
] → M × [0, 1

2
]

and the identity on the rest 1M(f)−M×[0, 1
2
). Since they agree on the intersection

M × {1
2
}, it’s clear that h1 is a homeomorphism.

So far we have constructed a homeomorphism h1 : M(f) → M(f) with the
following properties:

(12) h1 and 1M(f) are c(f)−1(W ′)-close,

(13) h1 � (M(f) −M × [0, 1
2
]) = 1M(f)−M×[0, 1

2
],

(14) h1(c(f)−1(Y )) ∩M = ∅.

Remark that (14) follows from (7) and (10); the rest of the conditions are clear.

I

M

Y

X

M(f)

c(f)−1(Y )

h1 //

I

M

Y

X

M(f)

Figure 2.7: The mapping h1.

Note that the set O = St(Y,W ′) is the open neighborhood of Y in X. We
now establish the fact

(15) for every y ∈ Y we have c(f)−1(y) ∪ h1(c(f)−1(y)) ⊂ c(f)−1(St(y,W ′)) ⊂
c(f)−1(O).

Take an arbitrary y ∈ Y and pick z ∈ c(f)−1(y). By (12) there is V ∈ W ′

with {z, h1(z)} ⊂ c(f)−1(V ). So y ∈ V from which it follows that {z, h1(z)} ⊂
c(f)−1(St(y,W ′)). That’s it.

We shall construct a continuous function b : M → (0, 1
4
] such that

(16) (M ×b I) ∩ h1(c(f)−1(Y )) = ∅ (see figure 2.8).

Recall that the definition of the variable product is in the section 2.4. Denote
Y ′ = h1(c(f)−1(Y )). Take any open cover G of M . We may assume that it is
countable and by the lemma 1.10 also that it is star-finite. Moreover, assume that
all the sets in G have compact closure. Take any U ∈ G. Since U has compact
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closure, there exists a number b∗U ∈ (0, 1
4
) such that (U × [0, b∗U ]) ∩ Y ′ = ∅.

Construct modified Urysohn function bU : M → [b∗U ,
1
4
] such that bU � U ≡ b∗U

and bU � M − St(U,G) ≡ 1
4
. Now define b : M → (0, 1

4
] by letting b(m) =

minU∈G bU(m) for every m ∈ M . Since G is star-finite, for each m ∈ M only
finitely many bU ’s are less than 1

4
, so the minimum clearly exists and well-defines

a continuous function. Moreover, b(m) ≤ b∗U for each m ∈ M and U ∈ G with
m ∈ U . The condition (16) follows.

I

M

Y

X

M(f)

b
t

I

M

M(f)

t

St(y,W ′)

Figure 2.8: The mappings b and t.

Similarly, we shall construct a continuous function t : M → [3
4
, 1) such that

(17) for every y ∈ Y there is V ∈ V such that

St(y,W ′) ∪
(
f−1(St(y,W ′)) ×′

t I
)
⊂ V.

(See figure 2.8).

In the previous formula, the symbol ×′
t is to mean the variable product, but in

a sense that X ×′
t I =

⋃
x∈X ({x} × [t(x), 1]) ⊂ X × I for any space X and any

continuous function t : X → I. For every y ∈ Y there is some V ∈ V with
St(y,W ′) ⊂ V , because W ′ is star-refinement of V . Since St(y,W ′) is a union of
finitely many compact sets, it is also compact. Therefore there exists a number
t∗y ∈ (3

4
, 1) with

St(y,W ′) ∪
(
f−1(St(y,W ′)) × [t∗y, 1)

)
⊂ V.

Notice that there are only countably many sets of the type St(y,W ′). We proceed
in a same way as in the construction of b, just taking max instead of min. At the
end we obtain a continuous t : M → [3

4
, 1) such that t(y) ≥ t∗y. It is now clear

that this t is as required.
Since c(f) is proper map, the set A = c(f)(h1(c(f)−1(Y ))) is closed. By (12),

A ⊂ O. Let β : M → I be an Urysohn function such that β � f−1(A) ≡ 1 and
β � (M − f−1(O)) ≡ 0.

For every pair (b, t) ∈ (0, 1
2
) × (1

2
, 1) we shall construct an isotopy Ψ(b,t) :

I × I → I which has the following properties:

(18) Ψ
(b,t)
0 = 1I , Ψ(b,t)(b) = t,
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1+t
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1

0

Figure 2.9: The graph of Ψ(b,t).

(19) Ψ
(b,t)
i � [1

2
(1 + t), 1] = 1[ 1

2
(1+t),1] for every i ∈ I.

(See the figure 2.9.)
We give the exact formula for this isotopy:

Ψ(b,t)(x, i) =


t−b
b
xi+ x, for (x, i) ∈ [0, b] × I,(

1 + 2(t−b)i
2b−1−t

)
x+ (1+t)(b−t)i

2b−1−t
, for (x, i) ∈ [b, 1

2
(1 + t)] × I,

x, for (x, i) ∈ [1
2
(1 + t), 1] × I.

It is clear from the construction of Ψ(b,t) that this mapping depend continuously
on b and t, i.e. the mapping Ψ : I × I × (0, 1

2
) × (1

2
, 1) → I defined by

Ψ � I × I × {b} × {t} = Ψ(b,t) for (b, t) ∈ (0, 1
2
) × (1

2
, 1)

is continuous. Now define the mapping Φ : M(f) →M(f) by (see figure 2.10){
Φ(x) = x, for x ∈ X,

Φ(p, i) = (p,Ψ(i, β(p), b(p), t(p))), for (p, i) ∈M × [0, 1).

An easy check shows that Φ is a homeomorphism.

I

M

A

X
O

M(f)

b t 1+t
2

Figure 2.10: The mapping Φ.

We show

(20) if y ∈ Y then there exists V ∈ V with Φh1(c(f)−1(y)) ⊂ V .

32



Choose an arbitrary y ∈ Y . By (15), h1(c(f)−1(y)) ⊂ c(f)−1(St(y,W ′)). From
the definition of Φ it follows that it maps c(f)−1(St(y,W ′)) onto itself. Since β
is 1 on f−1(A), by (18) and the definition of Φ we find that

(21) Φh1(c(f)−1(y)) ⊂ St(y,W ′) ∪ (f−1(St(y,W ′)) ×′
t I).

By (17), the set on the right-hand side is contained in some V ∈ V . That’s it.
We define h : M(f) → M(f) by h = h−1

1 ◦ Φ ◦ h1. We claim that this h
satisfies (3), (4) and (5). That h � X = 1X is clear since h1 � X = ΦX = 1X by
(13) and the definition of Φ, so (4) holds. Since t(m) > 1

2
for every m ∈ M , h1

is identity on Φh1(c(f)−1(Y )) (by (13) and (21)). So by (20), h satisfies (5). It
therefore remains to check (3).

Take any x ∈M(f). If h1(x) 6∈ c(f)−1(O), then it’s clear by the construction
of Φ that Φh1(x) = h1(x), therefore h(x) = x and we’re done. More diffi-
cult case is when h1(x) ∈ c(f)−1(O). By the definition of O we have h1(x) ∈
c(f)−1(St(y,W ′)) for some y ∈ Y . By (12) there exists V0 ∈ W ′ such that
{x, h1(x)} ⊂ c(f)−1(V0). Therefore, c(f)h1(x) ∈ St(y,W ′) ∩ V0, so there exists
V ∈ W ′ such that c(f)h1(x) ∈ V ∩ V0 and y ∈ V . By (12) there is V1 ∈ W ′ with
{Φh1(x), h−1

1 Φh1(x)} ⊂ c(f)−1(V1). By the definition of Φ we have Φh1(x) ∈
c(f)−1c(f)h1(x). Therefore, c(f)h1(x) ∈ V1. It follows that the intersection
V ∩V0∩V1 is nonempty, since it contains c(f)h1(x). Recall that x ∈ c(f)−1(V0) and

h(x) ∈ c(f)−1(V1). Consequently, {x, h(x)} ∈ c(f)−1(St(V,W ′)). Since W ′ ∗
<W ,

there exists W ∈ W with St(V,W ′) ⊂ W . Moreover, St(V,W ′) ∩ Y 6= ∅, since it
both sets contain y. From this fact, it follows that W is of the form Wz for some
z ∈ Y . By the choice of Wz there exists U ∈ U such that c(f)−1(Wz) ⊂ q−1(U).
Consequently, {x, h(x)} ⊂ c(f)−1(St(V,W ′)) ⊂ c(f)−1(Wz) ⊂ q−1(U). We are
done, since this means that q and q ◦ h are U -close. ♦

The continuation of the proof of the proposition 2.26. We shall now produce
desired near homeomorphism g : M(f) → M(f). We just proved that q is near
homeomorphism and g shall have the form γ−1 ◦ q, where γ : M(f) → Z is
carefully chosen homeomorphism approximating q.

From the proof of Bing Shrinking Criterion 1.13 it follows that q can be
approximated by homeomorphisms of the form

lim
n→∞

q ◦ f−1
n ◦ · · · ◦ f−1

1 ,

where each fn : M(f) →M(f) is shrinking homeomorphism of q. By (4) we can
choose each fn to be identity on X. We conclude that there is a homeomorphism
γ : M(f) → Z such that

(22) q and γ are as close as we wish,

(23) for every x ∈ X, q(x) = γ(x).
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Choose our γ to be q−1
1 (F)-close to q. As announced, we put g = γ−1 ◦ q. The

condition (2) clearly hold. We finish the proof by checking that also (1) hold.
Since

(1Z , qγ
−1)q−1

1 (F) =⇒ (q1, q1qγ
−1)F =⇒ (q1q, q1qγ

−1q)F ⇐⇒ (c(f), c(f)γ−1q)F ,

it’s enough to show the first statement. But for any z ∈ Z, γ−1(z) ∈ M(f), so
by choice of γ we have {z, qγ−1(z)} ⊂ q−1

1 (U) for some U ∈ F . We are done.

Proposition 2.28 (7.5.5*). Let M be a Q-manifold, let X be an ANR with the
disjoint cells property, and let g : M → X be cell-like. If proj : M × Q → M
denotes the projection, then the composition

M ×Q proj // M
g // X

is a near homeomorphism. Consequently, X is homeomorphic to the Q-manifold
M ×Q.

Proof. Put N = M × Q and f = g ◦ proj. Then N is a Q-manifold and f is
cell-like by the corollary 2.6. Let p : N × I → N be the projection. Then the
diagram

N × I
πf //

p

��

M(f)

c(f)

��
N

f // X

clearly commutes. An easy diagram chase establishes that f is a near homeomor-
phism if and only if c(f) is a near homeomorphism. We shall prove that c(f) is
a near homeomorphism.

Choose an open cover U ofM(f) and an open cover V ofX. We shall construct
a near homeomorphism h : M(f) →M(f) such that

(1) c(f) and c(f) ◦ h are V-close,

(2) for every x ∈ X there exists U ∈ U with h(c(f)−1(x)) ⊂ U .

It is clear that each homeomorphism φ : M(f) → M(f) closely approximating
h satisfies the conditions of Bing Shrinking Criterion 1.13. Therefore, we can
conclude that then c(f) is a near homeomorphism. (Recall that c(f) is proper.)

The near homeomorphism h will be of the form τ ◦ µ−1 ◦ g, where g is a near
homeomorphism such as in the proposition 2.26, and τ and µ are certain auxiliary
homeomorphisms to be constructed below.

For the needs of this proof we recall and extend the definition of variable
product. For the space X and continuous functions t : X → (0, 1] and s : X →
[0, 1) we put

X ×t I = {{x} × [0, t(x)] | x ∈ X} ⊂ X × I,

X ×′
t I = {{x} × [t(x), 1] | x ∈ X} ⊂ X × I,

X ×t
s I = {{x} × (s(x), t(x)) | x ∈ X} ⊂ X × I.
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Denote by U ∩X the cover {U ∩X | U ∈ U}. Let V1 be an open cover of X

such that all the sets in it have compact closure and V1

∗
< U ∩X. Let V2 an open

cover of X such that V2

∗
< V1 and V2

∗
< V . It is clear that for every V ∈ V2 there

is λV ∈ (0, 1] such that there exists U ∈ U with the property that

c(f)−1(V ) −N × [0, λV ] ⊂ U.

By the construction similar the that one in the previous proof we get a continuous
function λ : N → (0, 1] such that for each V ∈ V2 there exists U ∈ U with

(c(f)−1(V )) − (N ×λ I) ⊂ U.

(See the figure 2.11.)

I

N

M(f)

λ

V

Figure 2.11: The set c(f)−1(V ) − (N ×λ I)

Claim 1. There exist an open cover W of N and a sequence of continuous
functions ri : N → (0, 1] such that

(3) ri(x) < ri+1(x) for all i ∈ N and x ∈ N ,

(4) for every x ∈ N there exists n ∈ N such that rn(x) ≥ λ(x),

(5) for every W ∈ W and n ∈ N there exists U ∈ U such that

W ×rn+2
rn−2

I ⊂ U,

if we define r−1(x) = r0(x) = 0 for every x ∈ N ,

(6) λ intersects at most one of the rj’s on each set of the form W × [0, 1),
W ∈ W .

Proof of the claim. Write N =
⋃

i∈NCi, where C1 ⊂ intC2 ⊂ C2 ⊂ · · · are
compacta. Let dN be any metric on N , let dI denote the standard metric on
I and let d′ denote the metric on N × [0, 1) such that d′((x1, y1), (x2, y2)) =
dN(x1, x2) + dI(y1, y2). For every i ∈ N, the cover “U ∩ (C2i+1 × 1+λ

2
I)” has a

Lebesgue number, say δi, with respect to this metric, since it is an open cover of
the compact set. We may assume that δ1 > δ2 > · · · .
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N

M(f)

λr1 r2 r3 r4

Figure 2.12: The functions ri

For each i ∈ N, let ui : N → [0, 1] be Urysohn function such that ui � C2i−1 =
1 and ui � N − int(C2i) = 0.

First, we inductively construct the sequence (r′i)i∈N of continuous functions
from N to (0,∞) such that

(7) r′i(x) < r′i+1(x) for every x ∈ N and i ∈ {0, 1, 2, . . . },

(8) for any i ∈ N and x ∈ C2i+1 we have r′i+2(x) − r′i−2(x) < δi,

(9) for every x ∈ N there exists n ∈ N such that r′n(x) ≥ λ(x),

if we put r′−1(x) = r′0(x) = 0 for every x ∈ N .
We perform the inductive step in such a way that we maintain the condition

(7) and the condition

(10) if x ∈ C2i+1 − int(C2i−2) for some i ∈ N, then δi+1

5
< r′j(x) − r′j−1(x) < δi

5

for each j ∈ N.

It is easy to see that the conditions (8) and (9) follow from this one.
As the first step of the induction we define r′1 : N → (0,∞). For every i ∈ N,

for each x ∈ C2i+1−int(C2i−2) we put r′1(x) = δi+1

5
+ui(x)( δi

5
− δi+1

5
). It’s clear that

the functions are defined continuously on the closed sets covering N such that
the definitions agree on intersections. Therefore, the function r′1 is well-defined,
continuous and satisfies (7) and (10).

Now suppose we have already defined all r′j’s for j ≤ n. We put r′n+1(x) =

r′n(x) + δi+1

5
+ ui(x)( δi

5
− δi+1

5
) if x ∈ C2i+1 − int(C2i−2) for some i ∈ N. Clearly,

function defined in this way suffices for our needs.
Now just define rj(x) = min

(
λ(x) + (1 − 1

2(j+1)
)(min(δi,

1−λ(x)
2

)), r′j(x)
)

for
j ∈ N and x ∈ C2i+1. An easy check shows that the conditions analogous to
(7)–(9) for rj’s are satisfied, and rj’s are continuous functions into (0, 1). So also
(4) and (3) hold.

What remains is to construct the cover W . Pick x ∈ int(C2i+1), i ∈ N. By (9)
there is n ∈ N with rn(x) ≥ λ(x). By (8), each of the sets {x}× [rj−2(x), rj+2(x)]
for j ≤ n has d′-diameter less than δi. Moreover, also the set {x}×[rn(x), λ(x)+δi]
has d′-diameter less than δi and rn(x) < rm(x) < λ(x)+δi for all natural numbers
m ≤ n. Now by continuity of all involved functions and by the fact that there
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are only finitely many sets of the type we just described, there is a neighborhood
Wx of x in N such that the all the sets Wx ×

rj+2
rj−2 I have d′-diameter less than δi

and Wx ⊂ int(C2i+1). Therefore, each such set is contained in some U ∈ U . This
fixes the condition (5).

Let W = {Wx | x ∈ X}. We finish the proof of the claim by remark that
we can (by possibly taking smaller sets) adjust W in such a way that satisfies
(6). It is clear from the construction that also the rest of the conditions in the
formulation of the claim hold. ♦

Now take a metric d on M(f) such that the cover of all open 2-d-balls refine
the cover

{W ×rn+1
rn−1

I | n ∈ N,W ∈ W}.

Throughout the rest of the proof of the proposition we denote the diameter of
the set B ⊂ M(f) with respect to the metric d as diamd(B). Note that for the
set B ⊂M(f),

(11) diamd(B) < 1 and B ∩ (N ×λ I) 6= ∅ implies that there exist W ∈ W and
n ∈ N such that B ⊂ W ×rn+1

rn−1
I.

By the assumption, X is the locally compact ANR with the disjoint cells prop-
erty, so by the theorem 1.9 and the theorem 2.14 there exists a proper homotopy
H : N × I → X limited by V2 such that H0 = f and H1 is Z-embedding. Define
F : N × I →M(f) by

F (x, t) =

{
πf (x, 2t) for (x, t) ∈ N × [0, 1

2
]

H(x, 2t− 1) for (x, t) ∈ N × [1
2
, 1].

F is clearly a proper homotopy, F0 is an inclusion, ξ = F1 : N → X ⊂ M(f) is
an Z-embedding. Moreover, F is limited by c(f)−1(V2).

By the corollary 2.25, M(f) is Q-manifold. Furthermore, N × {1} is a Z-set
in N × I, so by the proposition 2.10 we have that X ∈ Z(M(f)). Therefore, also
ξ(N) ⊂ X is a Z-set in M(f). In addition, N ×{0} ∈ Z(M(f)). By the theorem
2.22 there exists an isotopy G : M(f) × I →M(f) such that

(12) G is limited by c(f)−1(V2),

(13) G0 = 1M(f) and G1 � N = ξ.

Put µ = G1 : M(f) → M(f). It follows that µ � N = ξ, so µ(N) = ξ(N).
Moreover,

(14) c(f) ◦ µ and c(f) are V2-close.

We have that ξ(N) ∈ Z(X), so by the proposition 2.26 there is a near home-
omorphism g : M(f) →M(f) such that
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(15) c(f) ◦ g and c(f) are V2-close,

(16) g � g−1(ξ(N)) = c(f) � c(f)−1(ξ(N)).

Claim 2. For every x ∈ X, if µ−1g(c(f)−1(x)) ∩N 6= ∅, then µ−1g(c(f)−1(x)) is
a single point.

Proof of the claim. From the assumption follows that g(c(f)−1(x))∩ξ(N) 6= ∅, so
c(f)−1(x)∩g−1ξ(N) 6= ∅. By (16) we have x ∈ ξ(N). Again by (16), g(c(f)−1(x))
is a single point. But since µ is a homeomorphism, also µ−1g(c(f)−1(x)) is a single
point. ♦

Define

A = {µ−1g(c(f)−1(x)) | x ∈ X and diamd

(
µ−1g(c(f)−1(x))

)
≥ 1}.

It is union of locally finite system of closed sets, so it is itself closed subset ofM(f).
By claim 2, A ∩ N = ∅. So by the construction summoned a few times before,
there exists a continuous function s1 : N → (0, 1) such that A ∩ (N ×s1 I) = ∅.
We may clearly assume that s1(x) < r1(x) for all x ∈ N . Put

A′ = {µ−1g(c(f)−1(x)) | x ∈ X and µ−1g(c(f)−1(x)) ∩ πf (N ×′
s1
I) 6= ∅}.

This set is again closed and has empty intersection with N , so there exists a
continuous function s2 : N → (0, 1) such that A′ ∩ (N ×s2 I) = ∅. Clearly
s2(x) < s1(x) for every x ∈ N . We repeat this construction inductively to get a
sequence (sn)n∈N of continuous functions from N to (0, 1) with the properties:

(17) if for some x ∈ N diamd (µ−1g(c(f)−1(x))) ≥ 1 then µ−1g(c(f)−1(x)) ∩
(N ×s1 I) = ∅,

(18) each µ−1g(c(f)−1(x)) intersects at most one of the “levels” {(x, si(x)) | x ∈
N} ⊂ N × I,

(19) for every x ∈ N and every i ∈ N we have si(x) > si+1(x).

Now we need a homeomorphism τ : M(f) →M(f) which performs “a push”
in the I-coordinate (we think of M(f) as a quotient space of N × I). It means
that the following condition holds:

(20) c(f)(x) = c(f)(τ(x)) for every x ∈M(f).

Moreover, it should “shrink” the fibres µ−1g(c(f)−1(x)) which are “big” (i.e. the
set A is “pushed to the right behind λ”; see the figure 2.13) and not “expand”
the rest very much. We can achieve this goal using ri’s and si’s.

We need a sequence (ti)i∈N of continuous functions from N to (0, 1) such that

(21) for every x ∈ N there are only finitely many n’s such that sn(x) 6= tn(x),
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N

M(f)

s1s2 λ

A

τ // N

M(f)

t1t2t3 λ

Figure 2.13: The homeomorphism τ

(22) t1(x) ≥ λ(x) and t1(x) > s1(x) for every x ∈ N ,

(23) for every i ∈ N and every x ∈ N we have ti(x) > ti+1(x),

(24) for each W ∈ W and each i ∈ N we have W ×ti+1

ti−1
I ⊂ W ×rj+2

rj−2 I ⊂ U ∈ U
for some j ∈ N and U ∈ U .

Claim 3. Such a sequence of ti’s exists.

Proof of the claim. We use the sequence we already have, namely ri’s. Let Ej =
{x ∈ N | ri−1(x) ≤ λ(x) ≤ rj(x) for j ∈ N and put Fi =

⋃
1≤j≤iEi. (Once again,

we regard r0 ≡ 0.)
By (4) there exists n ∈ N with En 6= ∅. If for some m ∈ N greater than n we

have Em = ∅, then by the continuity of λ we have Ek = ∅ for all k ≥ m and we
can define ti = rm−i for i = 1, 2, . . .m− 1 and ti = si−m+1 for i = m,m + 1, . . . .
An easy check show that this is enough.

So suppose that Em 6= ∅ for all m ≥ n. Note that by (6) each W ∈ W
intersects at most two (consecutive) Ei’s. In other words,

(25) St(Fi,W) ⊂ Fi+1 for all i ∈ N.

We construct required functions inductively. First we define all of them on Fn

and then inductively extend their domain over Fi’s.
As a first step, for x ∈ Fn put ti(x) = rn+2−i(x) for i = 1, 2, . . . , n + 1 and

ti(x) = si−n−1(x) for i = n+ 2, n+ 3, . . . The required conditions clearly hold.
To perform the step of induction, all we have to care about is to extend

already defined functions continuously and retain the conditions (21)–(24). So
suppose that our ti’s are defined on Fm for some m ≥ n. By (25) we have that
St(Fm,W) ⊂ Fm+1. There exist a closed set D1 and an open set D2 such that

Fm ⊂ int(D1) ⊂ D1 ⊂ D2 ⊂ D2 ⊂ St(Fm,W) ⊂ Fm+1.

Let v : N → I be Urysohn function such that v � D1 ≡ 0 and v � N −D2 ≡ 1.
Now for x ∈ Fm+1 − int(Fm) define

ti(x) =


rm+2−i(x) + v(x)(rm+3−i(x) − rm+2−i(x)) for 1 ≤ i ≤ m+ 1

sm+1−n(x) + v(x)(r1(x) − sm+1−n(x)) for i = m+ 2

si−n−1(x) for i ≥ m+ 3.
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We are done. ♦

We construct τ . Fix x ∈ N . Let n(x) denote such natural number that for all
natural i ≥ n(x) we have si(x) = ti(x). Define τ ′x : [0, 1) → [0, 1) by the statement
that it takes [0, sn(x)(x)] linearly onto [0, tn(x)(x)], it takes [si+1(x), si(x)] linearly
onto [ti+1(x), ti(x)], it takes [s1(x), 1

2
(t1(x) + 1)] linearly onto [t1(x), 1

2
(t1(x) + 1)]

and finally it is identity on [1
2
(t1(x) + 1), 1). It is clearly a homeomorphism of

[0, 1) for each x ∈ N .
Let the mapping τ ′ : N× [0, 1) → N× [0, 1) be defined by τ ′(x, t) = (x, τ ′x(t)).

Since all ti’s and si’s are continuous, τ ′ is continuous. It is clear that it is also
a homeomorphism which is the identity on N ×′

1
2
(t1(x)+1)

[0, 1). Consequently, if

we define τ : M(f) →M(f) as τ ′ on N × [0, 1) and the identity on the rest, it is
also a homeomorphism. It is easy to see that it has all the required properties,
i.e. the condition (20) is true, τ(W ×si+1

si−1 I) ⊆ W ×ti+1

ti−1
I for each W ∈ W and

i ∈ N and τ(A) ⊂M(f) − (N ×λ I).

Claim 4. For every x ∈ X, τµ−1g(c(f)−1(x)) ⊂ U for some U ∈ U .

Proof of the claim. Take any p ∈ X. By (15), g(c(f)−1(p)) ⊂ c(f)−1(V ) for some
V ∈ V2 containing p. Now it follows from (14) that

(26) for any p ∈ X there exists Vp ∈ V2 containing p such that µ−1g(c(f)−1(p)) ⊂
c(f)−1(St(Vp,V2)).

Take any x ∈ X and assume that µ−1g(c(f)−1(x)) is not a single point. (If it
were, the claim clearly holds.)

Case 1: µ−1g(c(f)−1(x)) ∩ (N ×s2 I) = ∅. Then by the definition of τ and
(26) we have that

τµ−1g(c(f)−1(x)) ⊂
⋃

{c(f)−1(V ′) − (N ×λ I) | V ′ ∈ V2 and V ′ ∩ Vx 6= ∅}

⊂ c(f)−1(St(Vp,V2)) − (N ×λ I) ⊂ U,

for some U ∈ U .
Case 2: µ−1g(c(f)−1(x))∩ (N×s2 I) 6= ∅. By (17), diamd (µ−1g(c(f)−1(x))) <

1, so by (18) and claim 2 there exists i ∈ N such that

µ−1g(c(f)−1(x)) ⊂ N ×si+1
si−1

I.

By (11) there exists W ∈ W such that

µ−1g(c(f)−1(x)) ⊂ W × I.

Putting these facts together and using the definition of τ we have

τµ−1g(c(f)−1(x)) ⊂ W ×ti+1

ti−1
I

and by (24) the last set is contained in some U ∈ U . ♦
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So far we proved that we picked up τ, g and µ such that the condition (2) is
satisfied. We finish the proof by showing that c(f)τµ−1g and c(f) are V-close —
the condition (1). Take any x ∈ M(f), put y = c(f)(x) ∈ X. By (26) there is
V ∈ V2 containing y such that

µ−1g(c(f)−1(y)) ⊂ c(f)−1(St(V,V2)).

By the definition of τ we get that also

τµ−1g(c(f)−1(y)) ⊂ c(f)−1(St(V,V2)),

and finally by the definition of V2 the last set is contained is some V ∈ V . We
are done.

Theorem 2.29 (Stability of Q-manifolds; 7.5.6*). If M is a Q-manifold,
then M×Q and M are homeomorphic. Moreover, the projection proj : M×Q →
M is a near-homeomorphism.

Proof. By the theorem 2.15, M is the locally compact ANR with the disjoint cells
property. The identity 1M : M →M is obviously cell-like. So by the proposition
2.28 we conclude that the composition

M ×Q proj // M
1M // M

is a near homeomorphism. We are done.

Theorem 2.30 (Toruńczyk’s Approximation Theorem; 7.5.7*). Let M be
a Q-manifold, let X be a locally compact ANR and let f : M → X be cell-like.
Then the following statements are equivalent:

(1) f is a near homeomorphism,

(2) X has the disjoint-cells property.

Proof. The implication (1) =⇒ (2) is clear, since every Q-manifold has the dis-
joint cells property. By the proposition 2.28, the composition

M ×Q proj // M
f // X

is a near homeomorphism. Since by the theorem 2.29 proj : M × Q → M is a
near homeomorphism, it follows easily that also f is a near homeomorphism.
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