Week 9 Exercises

9.2 Sheet 17 More problems on Numerical Integration

Exercise 1

Use the Simpson’s rule with six strips to find an approximate value for \[ \int_0^{\pi/4}x^2\sin(2x)\ dx, \] giving your answer correct to four decimal places.

Exercise 2

By using the Simpson’s rule with 8 equal intervals, determine \[ \int_0^4\frac{x+3}{x^2+3x+2}\ dx, \] stating the answer to four decimal places.

Exercise 3

Using the Simpson’s rule with 6 strips, find an approximate value for \[ \int_4^6\frac{12}{(x-3)(x+1)}\ dx, \] giving your answer correct to four decimal places.

[Solutions: 1. \(0.1426\); 2. \(2.1230\); 3. \(2.2874\);]

9.3 Sheet 18 Mean and RMS Values

Exercise 1

Determine the mean and RMS values for the following functions

  1. \(x^2-x\) from \(x=1\) to \(x=3\);
  2. \(x(3-x)\) from \(x=0\) to \(x=3\);
  3. \(3\sin(2t)\) from \(t=0\) to \(t=\pi/2\);
  4. \(2+3\sin(\theta)\) from \(\theta=0\) to \(\theta=\pi\);
  5. \(\sin(x)\) from \(x=0\) to \(x=\pi\) and from \(x=0\) to \(x=2\pi\);
  6. \(\cos^2(x)\) from \(x=0\) to \(x=2\pi\);
  7. \(\sin^2(x)\) from \(x=0\) to \(x=\pi/6\).

Exercise 2

Determine the average value of \(y = \sin(3x) + \cos(x)\) for values of \(x\) ranging from \(0\) to \(\pi/6\).

Exercise 3

Evaluate the mean values for

  1. \(1/\sqrt{16-2x^2}\) from \(x=0\) to \(x=2\);
  2. \(1/(1+x^2)\) from \(x=0\) to \(x=1\).

Exercise 4

Determine the RMS values for the following functions

  1. \(x(2-x)\) from \(x=0\) to \(x=2\);
  2. \(1+\sin(x)\) from \(x=0\) to \(x=2\pi\);
  3. \(3+2\cos(x)\) from \(x=0\) to \(x=2\pi\);
  4. \(100\sin(pt)+60\sin(3pt)\) from \(t=0\) to \(t=2\pi/p\).

Exercise 5

The instantaneous voltage in an AC (alternating current) circuit is given by \(v = 6 + 8\cos(\omega t)\). Determine the RMS value for the time period \(t = 0\) to \(t = 2\pi/\omega\).

Exercise 6

An alternating current is given by \(i = a\sin(\theta)\). Determine the RMS value of the current over a half wave and show that the ratio of the RMS value to the mean value is approximately \(1.11\).

[Solutions: 1. (i) \(\overline{y}=2.33\), \(\overline{y}_{\text{RMS}}=2.92\), (ii) \(\overline{y}=1.5\), \(\overline{y}_{\text{RMS}}=1.64\), (iii) \(\overline{y}=1.9\), \(\overline{y}_{\text{RMS}}=2.12\), (iv) \(\overline{y}=3.9\), \(\overline{y}_{\text{RMS}}=4.02\), (v) \(\overline{y}=0.64\), \(\overline{y}_{\text{RMS}}=0.707\), (vi) \(\overline{y}=0.51\), \(\overline{y}_{\text{RMS}}=0.61\), (vii) \(\overline{y}=0.087\), \(\overline{y}_{\text{RMS}}=0.1\); 2. \(\overline{y}=1.59\); 3. (i) \(\overline{y}=0.277\), (ii) \(\overline{y}=0.78\); 4. (i) \(\overline{y}_{\text{RMS}}=0.73\); (ii) \(\overline{y}_{\text{RMS}}=1.22\); (iii) \(\overline{y}_{\text{RMS}}=\sqrt{11}\); (iv) \(\overline{y}_{\text{RMS}}=82.5\); 5. \(\overline{v}_{\text{RMS}}=8.2\); 6. \(\overline{i}=2a/\pi\), \(\overline{i}_{\text{RMS}}=a/\sqrt{2}\), ratio \(=1.11\);]