Exercises 18 (Polar coordinates)
Express in polar form:
- \((5, 2)\)
- \((3, 7)\)
- \((-5, 2)\)
- \((-8, -9)\)
- \((17, -12)\)
Express in rectangular form:
- \(5 \angle 65^\circ\)
- \(3.8 \angle 124^\circ\)
- \(7.2 \angle -56^\circ\)
- \(15 \angle -138^\circ\)
Six holes are marked out in polar coordinates as:
Hole 1 | \(65 \angle 65^\circ\) |
Hole 2 | \(55 \angle 95^\circ\) |
Hole 3 | \(45 \angle -20^\circ\) |
Hole 4 | \(80 \angle 55^\circ\) |
Hole 5 | \(160 \angle -170^\circ\) |
Hole 6 | \(95 \angle -80^\circ\) |
Sketch the system and determine the position of Hole 1 relative to Hole 6 in rectangular coordinates. The coordinates for each hole are given relative to the previous hole.
For values of \(\theta\) in the range \(0\) to \(2\pi\), plot at intervals of \(\pi/6\) radians the functions:
- \(r = 2 \sin \theta\)
- \(r = 2 \cos^2\theta\)
- \(r = a(1 + 2 \cos \theta)\)
- \(r = a \cos \theta\)
- \(r = a \sin^2\theta\)
- \(r = a \sin 2\theta\)
- \(r = a \sin 3\theta\)
- \(r = a \cos 2\theta\)
- \(r = a \cos 3\theta\)
Assume \(a\) is a constant.
Solutions: 1. (i) \(5.38\angle21.8^\circ\); (ii) \(7.61\angle66.8^\circ\); (iii) \(5.38\angle158.2^\circ\); (iv) \(12.04\angle-131.6^\circ\); (v) \(20.8\angle -35.23^\circ\); 2. (i) \((2.1,4.3)\); (ii) \((-2.1,3.15)\); (iii) \((4.03,-5.97)\); (iv) \((-11.1,-10.0)\); 3. \((57.7,16.4)\); 4.