Topic 19 Sine and cosine rules
Theorem 19.1 Given an arbitrary triangle (marked as on Figure 19.1), we have:
Sine Rule: \(\boxed{\dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C}}\) = diameter of the circumscribed circle.
Cosine Rule: \(\boxed{a^2+b^2 = c^2 + 2ab\cos C}\)
and variants:
\(b^2+c^2 = a^2 + 2bc\cos A\)
\(a^2+c^2 = b^2 + 2ac\cos B\)\(\boxed{\mathrm{Area} = \frac12 bh = \frac12ab\sin C = \sqrt{s(s-a)(s-b)(s-c)}}\) where \(h\) is the height of the triangle (see Figure 19.2) and \(s=\dfrac{a+b+c}{2}\).
(The formula with \(s\) is called Heron’s formula.)
Proofs (non-examinable): Start by further marking the triangle as in Figure 19.2.
- (Sine rule) By definition of sine in the triangles \(CHB\) and \(HAB\), we have \(a\sin C=h=c\sin A\).
\(\implies\) \(\dfrac{a}{\sin A}=\dfrac{c}{\sin C}\).
The other equalities can be derived similarly.
(Cosine rule) We begin by using Pythagoras’ Theorem for the triangles \(CHB\) and \(HAB\): \[\begin{align*} a^2-x^2 &= h^2 = c^2-(b-x)^2\\ a^2-x^2 &=c^2-b^2+2bx - x^2\\ a^2+b^2 &= c^2+2bx \end{align*}\] From the definition of cosine for the triangle \(CHB\), we have \(x=a\cos C\), which leads to \[ a^2+b^2=c^2-2ab\cos C. \]
(Area of the triangle)
The area of the triangle \(ABC\) is the sum of the areas of the two right triangles \(CHB\) and \(HAB\), each of which is a half of the area of a rectangle. Thus \[ \mathrm{Area} = \frac12xh + \frac12(b-x)h = \frac12bh. \] Using the definition of sine for the triangle \(CHB\), we get \(h=a\sin C\), hence we get further \[ \mathrm{Area} = \frac12ab\sin C. \] Deriving Heron’s formula is a little more algebraically involved. Recall from above that \[\begin{align*} a^2+b^2&=c^2+2bx\\ \implies\quad\quad\quad x&=\frac{a^2+b^2-c^2}{2b} \end{align*}\] Starting now with the Pythagoras’s Theorem for triangle \(CHB\), we obtain \[\begin{align*} h^2 &= a^2-x^2 = a^2-\left(\frac{a^2+b^2-c^2}{2b}\right)^2\\ &= \frac{4a^2b^2 - (a^2+b^2-c^2)^2}{4b^2}\\ &= \frac{(2ab + a^2+b^2-c^2)(2ab-a^2-b^2+c^2)}{4b^2} &&\text{NB: }X^2-Y^2=(X+Y)(X-Y)\\ &= \frac{\left((a+b)^2-c^2\right)\cdot\left(c^2 - (a-b)^2\right)}{4b^2}\\ &= \frac{(a+b+c)(a+b-c)(c+a-b)(c-a+b)}{4b^2} &&\text{NB: same trick as above}\\ &= \frac{2s\cdot 2(s-c)\cdot 2(s-b) \cdot 2(s-a)}{4b^2} = 4\cdot\frac{s(s-a)(s-b)(s-c)}{b^2}. \end{align*}\] Consequently, \[\begin{align*} \mathrm{Area} &= \frac12bh\\ &= \frac12 b \sqrt{4\frac{s(s-a)(s-b)(s-c)}{b^2}}\\ &= \sqrt{s(s-a)(s-b)(s-c)}. \end{align*}\]
To find all the sides and angles of a triangle, you may want to use the following approach:
given: | use: |
---|---|
one side and two angles | sine rule |
two sides and an angle (not between them) | sine rule |
two sides and the angle between them | cosine rule |
three sides | cosine rule |
Example 19.1 Calculate the angles of a triangle with sides of length \(a=80\,\mathrm{mm}\), \(b=70\,\mathrm{mm}\), \(c=50\,\mathrm{mm}\).
Solution. Using the cosine rule, we calculate \[\begin{align*} \cos A &= \frac{b^2+c^2-a^2}{2bc}\\ &= \frac{70^2+50^2-80^2}{2\cdot70\cdot50} =\frac{1}{7} \approx 0.1429 \end{align*}\] \(\implies\) \(\angle A = \arccos 0.1429 \approx 81.78^\circ\).
Using the sine rule, we calculate
\[\begin{align*}
\sin B &= b\cdot \frac{\sin A}{a}\\
&= 70 \cdot \frac{\sin 81.78^\circ}{80} \approx 0.866
\end{align*}\]
\(\implies\) \(\angle B=\arcsin 0.866 \approx 60^\circ\)
\(\implies\) \(\angle C = 180^\circ-\angle A-\angle B= 38.22^\circ\).
Example 19.2 Determine the area of a triangle with \(a=6\,\mathrm{m}\), \(b=5\,\mathrm{m}\), \(c=9\,\mathrm{m}\).
Solution. We use Heron’s formula: \[\begin{align*} s&=\frac{a+b+c+}{2}=\frac{6\,\mathrm{m} + 5\,\mathrm{m}+ 9\,\mathrm{m}}{2}=10\,\mathrm{m}\\ \implies\quad\quad\quad\mathrm{Area} &= \sqrt{s(s-a)(s-b)(s-c)}\\ &= \sqrt{10\,\mathrm{m}\cdot 4\,\mathrm{m}\cdot 5\,\mathrm{m}\cdot 1\,\mathrm{m}} \\ &= \sqrt{200\,\mathrm{m^4}} \approx 14.14\,\mathrm{m^2}. \end{align*}\]
Example 19.3 Determine all sides, angles and area of a triangle with \(b=10\,\mathrm{m}\), \(c=5\,\mathrm{m}\) and \(\angle A=120^\circ\).
Solution. First, we use cosine rule to determine \(a\): \[\begin{align*} a^2 &= b^2+c^2-2bc\cos A\\ &= 100\,\mathrm{m^2} + 25 \,\mathrm{m^2} - 2\cdot 10\,\mathrm{m}\cdot 5\,\mathrm{m}\cdot \cos 120^\circ\\ &= 125\,\mathrm{m^2} + 50 \,\mathrm{m^2} = 175 \,\mathrm{m^2}\\ \implies\quad\quad\quad a &= \sqrt{175\,\mathrm{m^2}} =5\sqrt{7}\,\mathrm{m} \approx 13.23\,\mathrm{m}. \end{align*}\]
Second, we use sine rule to calculate \(\angle B\): \[\begin{align*} \sin B &= b\cdot\frac{\sin A}{a}\\ &= 10\,\mathrm{m}\cdot \frac{\sin 120^\circ}{5\sqrt{7}\,\mathrm{m}} = \frac{10\cdot \frac{\sqrt{3}}{2}}{5\sqrt{7}} =\frac{\sqrt{3}}{\sqrt{7}}\approx 0.6547\\ \implies\quad\quad\quad \angle B &= \arcsin 0.6547 \approx 40.9^\circ. \end{align*}\]
Third, we calculate \[ \angle C = 180^\circ - \angle A-\angle B = 180^\circ- 120^\circ - 40.9^\circ = 19.1^\circ. \]
Finally, we can use (for example) Heron’s formula to obtain the area: \[\begin{align*} s &= \frac{a+b+c}{2} = \frac{10+5+5\sqrt{7}}{2}\,\mathrm{m} \approx 14.12\,\mathrm{m}\\ \implies\quad\quad\quad \mathrm{Area} &= \sqrt{s(s-a)(s-b)(s-c)}\\ &=\sqrt{14.12\cdot 0.89\cdot 4.12\cdot 9.12} \,\mathrm{m^2} \approx 21.73\,\mathrm{m^2}. \end{align*}\]