Exercises 20 (Compound and multiple angles)

  1. Without using a calculator find:

    1. sin15
    2. cos15
    3. tan15
    4. sin105
    5. cos105
  2. If cosA=0.6, cosB=0.8, and that both A and B are acute angles, determine without using a calculator the values of sin(A+B) and cos(A+B).

  3. Given that cosA=0.2, cosB=0.5, and that both A and B are acute angles, find the values of sin(A+B) and cos(AB) (without using a calculator to determine A and B).

  4. Prove that sin(θ+45)=12(sinθ+cosθ).

  5. If tan(A+B)=0.75 and tanA=2, determine B.

  6. Show that sin(θ+90)+cos(θ180)=0.

  7. Determine the acute angle θ, which satisfies the equation 3cos(θ14)=4sinθ.

  8. Prove that:

    1. cos2θcosθ+sinθ=cosθsinθ
    2. 1cos2θ1+cos2θ=tan2θ
  9. Show that sin3A=3sinA4sin3A.

  10. Express as a sum or difference:

    1. 2cos5θcos3θ
    2. sin25cos65
    3. cos3xcosx
    4. sin5xcosx
    5. 2sin(x+y)sin(xy)
  11. Show that sin(θ+45)sin(45θ)=12cos2θ.

  12. Prove that sinA+sin3A+sin5AcosA+cos3A+cos5A=tan3A.

  13. Prove that sinAsin5A+sin9Asin13AcosAcos5Acos9A+cos13A=cot4A.

  14. (* difficult) Show that in any triangle tanBC2=bcb+ccotA2.

Solutions: 1. (i) 3122; (ii) 3+122; (iii) 313+1; (iv) 3+122; (v) 1322; 2. sin(A+B)=1, cos(A+B)=0; 3. sin(A+B)=6/5+3/100.6631 (4 d.p.), cos(AB)=1/10+32/50.9465 (4 d.p.); 5. B=26.6; 7. θ=41.6; 10. (i) cos8θ+cos2θ; (ii) 12(1sin40); (iii) 12(cos4x+cos2x); (iv) 12(sin6x+sin4x); (v) cos2ycos2x