Exercises 20 (Compound and multiple angles)
Without using a calculator find:
- sin15∘
- cos15∘
- tan15∘
- sin105∘
- cos105∘
If cosA=0.6, cosB=0.8, and that both A and B are acute angles, determine without using a calculator the values of sin(A+B) and cos(A+B).
Given that cosA=0.2, cosB=0.5, and that both A and B are acute angles, find the values of sin(A+B) and cos(A−B) (without using a calculator to determine A and B).
Prove that sin(θ+45∘)=1√2(sinθ+cosθ).
If tan(A+B)=0.75 and tanA=2, determine B.
Show that sin(θ+90∘)+cos(θ−180∘)=0.
Determine the acute angle θ, which satisfies the equation 3cos(θ−14∘)=4sinθ.
Prove that:
- cos2θcosθ+sinθ=cosθ−sinθ
- 1−cos2θ1+cos2θ=tan2θ
Show that sin3A=3sinA−4sin3A.
Express as a sum or difference:
- 2cos5θcos3θ
- sin25∘cos65∘
- cos3xcosx
- sin5xcosx
- 2sin(x+y)sin(x−y)
Show that sin(θ+45∘)sin(45∘−θ)=−12cos2θ.
Prove that sinA+sin3A+sin5AcosA+cos3A+cos5A=tan3A.
Prove that sinA−sin5A+sin9A−sin13AcosA−cos5A−cos9A+cos13A=cot4A.
(* difficult) Show that in any triangle tanB−C2=b−cb+ccotA2.
Solutions: 1. (i) √3−12√2; (ii) √3+12√2; (iii) √3−1√3+1; (iv) √3+12√2; (v) 1−√32√2; 2. sin(A+B)=1, cos(A+B)=0; 3. sin(A+B)=√6/5+√3/10≈0.6631 (4 d.p.), cos(A−B)=1/10+3√2/5≈0.9465 (4 d.p.); 5. B=−26.6∘; 7. θ=41.6∘; 10. (i) cos8θ+cos2θ; (ii) 12(1−sin40∘); (iii) 12(cos4x+cos2x); (iv) 12(sin6x+sin4x); (v) cos2y−cos2x